原题链接 http://poj.org/problem?id=1458
Common Subsequence
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly
increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b,
c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
Source Code
/*
最长公共子序列
DP[i, j] = 0 if i == 0 or j == 0;
DP[i, j] = DP[i - 1][j - 1] + 1; if ch1[i] == ch2[j]
DP[i, j] = max(DP[i - 1][j], DP[i][j - 1]); if ch1[i] != ch2[j]
滚动数组:
dp[i][j]的值只依赖于dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1];
dp[i%2][j]=max(dp[(i-1)%2][j], dp[i%2][j-1]);
注意上面的取余运算,重复利用这2行数组,数组好象在“滚动”一样,所以叫滚动数组
*/
#include <iostream>
using namespace std;
#define Max 1001
int match[2][Max];
char input1[Max], input2[Max];
int main() {
int i, j;
while (scanf("%s %s", input1 + 1, input2 + 1) != EOF) {
memset(match, 0, sizeof(match));
for (i = 1; input1[i] != '\0'; i++) {
for (j = 1; input2[j] != '\0'; j++) {
if (input1[i] == input2[j]) {
match[i % 2][j] = match[(i - 1) % 2][j - 1] + 1;
} else {
if (match[(i - 1) % 2][j] > match[i % 2][j - 1]) {
match[i % 2][j] = match[(i - 1) % 2][j];
} else {
match[i % 2][j] = match[i % 2][j - 1];
}
}
}
}
printf("%d\n", match[(i - 1) % 2][j - 1]);
}
}