lightGBM实例——特征筛选和评分卡模型构建

数据还是采用这个例子里的数据,具体背景也同上。
添模型构建——使用逻辑回归构建模型,lightGBM进行特征筛选
lightGBM模型介绍请看这个链接:集成学习——Boosting算法:Adaboost、GBDT、XGBOOST和lightGBM的简要原理和区别
具体代码如下:
导入模块

# 导入模块
import pandas as pd
import numpy as np
import lightgbm as  lgb
from sklearn.metrics import roc_auc_score, roc_curve, classification_report
from sklearn import metrics
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
import math

读取数据

df = pd.read_csv('Bcard.txt')
print(df.info())
df.head()

在这里插入图片描述
划分训练集和测试集

# 划分测试集和验证集
train = df[df.obs_mth!='2018-11-30'].reset_index().sort_values('obs_mth', ascending=False)
val = df[df.obs_mth == '2018-11-30'].reset_index()
train.head()

在这里插入图片描述
将训练集的数据进行分组

# 按照时间先后顺序分为5组
train['rank'] = [i for i in range(train.shape[0])]
train['rank'] = pd.cut(train['rank'], bins=5, labels=[i for i in range(5)])
train['rank'].value_counts()

在这里插入图片描述
获取特征

ft_lst = train.columns
ft_lst=ft_lst.drop(['index','rank','bad_ind','obs_mth','uid'])
ft_lst

在这里插入图片描述
定义模型函数

# 先定义lgb模型函数
def lgb_test(train_X,train_y,test_X,test_y):
    from multiprocessing import cpu_count
    lgb_clf = lgb.LGBMClassifier(learning_rate=0.05,n_estimators=100)
    lgb_clf.fit(train_X, train_y, eval_set=[(train_X, train_y), (test_X, test_y)], eval_metric='auc', early_stopping_rounds=100)
    lgb.plot_metric(lgb_clf,metric='auc')
#     print(lgb_clf.n_features_)
    return lgb_clf, lgb_clf.best_score_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC人工智残

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值