本文主要介绍keras中过拟合和欠拟合的情况,以及如何解决过拟合和欠拟合的情况。
示例代码:
from keras.datasets import imdb
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
import matplotlib.pyplot as plt
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
def vectorize_sequences(sequences, dimension=10000):
# 创建一个全0矩阵->shape(len(sequences), dimension)
results = np.zeros((len(sequences), dimension))
for i, sequence in enumerate(sequences):
results[i, sequence] = 1
return results
# 将训练数据和测试数据矢量化
X_train = vectorize_sequences(train_data)
X_test = vectorize_sequences(test_data)
# 矢量化标签
y_train = np.asarray(train_labels).astype('float32'