在TensorFlow训练样本的数据中,有时会出现过拟合(overfiting)的问题,可以采取dropout的方法来解决,即随机丢弃部分样本。
下面是示例代码,通过tensorboard对结果进行了可视化:
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
# load data
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3)
def add_layer(inputs, in_size, out_size, layer_name, activation_function=None):
with tf.name_scope('layer'):
with tf.name_scope('weigh