matplotlib实现TensorFlow训练过程的可视化

这篇博客展示了如何利用matplotlib在TensorFlow训练过程中进行数据拟合的可视化,通过代码实现红线对数据点的动态拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇博客介绍使用matplotlib实现TensorFlow训练过程的可视化,下面是代码:

# encoding:utf-8
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt


# 添加层
def add_layer(inputs, in_size, out_size, activation_function=None):
    W = tf.Variable(tf.random_normal([in_size, out_size]))
    b = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    Wx_plus_b = tf.matmul(inputs, W) + b
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b)
    return outputs

# 生成输入数据、噪点和输出数据
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5+noise


xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.fl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cchangcs

谢谢你的支持~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值