#!usr/bin/env python
# coding=utf-8
import numpy as np
import pandas as pd
import datetime
import itertools
import tensorflow as tf
from tensorflow.keras.layers import *
import tensorflow.keras.backend as K
from tensorflow.keras import layers
class MMoELayer(Layer):
"""
The Multi-gate Mixture-of-Experts layer in MMOE model
Input shape
- 2D tensor with shape: ``(batch_size, units)``.
Output shape
- A list with **num_tasks** elements, which is a 2D tensor with shape: ``(batch_size, units_experts)`` .
Arguments
- **num_tasks**: integer, the number of tasks, equal to the number of outputs.
- **num_experts**: integer, the number of experts.
- **units_experts**: integer, the dimension of each output of MMOELayer.
References
- [Jiaqi Ma, Zhe Zhao, Xinyang Yi, et al. Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts[C]](https://dl.acm.org/doi/10.1145/3219819.3220007)
"""
def __init__(self, units_experts, num_experts, num_tasks,
use_expert_bias=True, use_gate_bias=True, expert_activation='relu', gate_activation='softmax',
expert_bias_initializer='zeros', gate_bias_initializer='zeros', expert_bias_regularizer=None,
gate_bias_regularizer=None, expert_bias_constraint=None, gate_bias_constraint=None,
expert_kernel_initializer='VarianceScaling', gate_kernel_initializer='VarianceScaling',
expert_kernel_regularizer=None, gate_kernel_regularizer=None, expert_kernel_constraint=None,
gate_kernel_constraint=None, activity_regularizer=None, **kwargs):
super(MMoELayer, self).__init__(**kwargs)
self
mmoe_layer
最新推荐文章于 2025-05-11 19:52:07 发布
该博客介绍了如何使用TensorFlow实现MMOE(Multi-gate Mixture-of-Experts)层,这是一种用于多任务学习的模型。MMOE层通过多个专家网络和门控网络来处理不同任务,每个任务可以利用多个专家的输出,并通过门控网络加权求和得到最终结果。文章详细阐述了MMOE层的结构、参数配置、权重初始化、激活函数等,并给出了实例代码演示其工作原理。

最低0.47元/天 解锁文章
1788

被折叠的 条评论
为什么被折叠?



