昇思25天学习打卡营第1天 | 什么是昇思MindSpore

背景

今天收到了优快云的邮件,参加了华为组织的昇思 MindSpore 25天学习营,我会持续更新学习情况。

什么是昇思 MindSpore

MindSpore 是华为为了帮助开发者降低开发难度和运营成本,同时承载端、边、云全场景 AI 计算需求,发布的全场景 AI 计算框架,源码公布在 GiteeGithub 上。

MindSpore 统一训练和推理框架,旨在实现易开发、高效执行、全场景统一部署三大目标。

其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。

昇思MindSpore总体架构如下图所示:

MindSpore-arch

  • ModelZoo(模型库):ModelZoo提供可用的深度学习算法网络。
  • MindSpore Extend(扩展库):昇思MindSpore的领域扩展库,支持拓展新领域场景,如GNN/深度概率编程/强化学习等,期待更多开发者来一起贡献和构建。
  • MindSpore Science(科学计算):MindScience是基于昇思MindSpore融合架构打造的科学计算行业套件,包含了业界领先的数据集、基础模型、预置高精度模型和前后处理工具,加速了科学行业应用开发。
  • MindExpression(全场景统一API):基于Python的前端表达与编程接口,支持两个融合(函数/OOP编程范式融合、AI+数值计算表达融合)以及两个统一(动静表达统一、单机分布式表达统一)。
  • 第三方前端:支持第三方多语言前端表达,未来计划陆续提供C/C++等第三方前端的对接工作,引入更多的第三方生态。
  • MindSpore Data(数据处理层):提供高效的数据处理、常用数据集加载等功能和编程接口,支持用户灵活地定义处理注册和pipeline并行优化。
  • MindCompiler(AI编译器):图层的核心编译器,主要基于端云统一的MindIR实现三大功能,包括硬件无关的优化(类型推导、自动微分、表达式化简等)、硬件相关优化(自动并行、内存优化、图算融合、流水线执行等)、部署推理相关的优化(量化、剪枝等)。
  • MindRT(全场景运行时):昇思MindSpore的运行时系统,包含云侧主机侧运行时系统、端侧以及更小IoT的轻量化运行时系统。
  • MindSpore Insight(可视化调试调优工具):昇思MindSpore的可视化调试调优工具,能够可视化地查看训练过程、优化模型性能、调试精度问题、解释推理结果。
  • MindSpore Armour(安全增强库):面向企业级运用时,安全与隐私保护相关增强功能,如对抗鲁棒性、模型安全测试、差分隐私训练、隐私泄露风险评估、数据漂移检测等技术。

总结

今天先对 MindSpore 有个大概的认知,明天继续。

打卡图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SiliconMeow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值