前言
目前大模型能达到的场景和优化的效果,基本上能达到专家的效果。在微调试下回复和表达可以已经可以达到中高级产出,这里主要针对的是行业深度场景结合的设计方案。
概述
这里的设计原则依然是定位在辅助人的角色上,核心节点需要人工的确认。目前遇到的或是可以看到的基本上很多是概念视频展示不做结合参考,以市面上结果稳定输出的大模型为主。
在结合某一行业或是场景上,需要比较大的定制化和数据调试,有成本的投入可以是三方或是自己训练行业针对性的场景,这个的成本不言而喻,中小团队无法或是很难承接。
针对这样的情况,通用大模型已经具备很强的推理能力,结合这个来做针对话的业务场景定制,一个是降低成本,简单可维护,以提高落地能力。
业务场景结合设计方案
以下是整体的业务赋能设计方案,以智能体结合业务整合作为基本设计方向:
数据采集层
这个是企业或是团队的核心,也是输出推理结果的主要推理数据来源,数据的采集不仅是互联网还有团队经验,这些会形成特有的知识库。
数据治理层
这些服务从数据治理的角度支持了数据的标准化、集成、开发和实时处理,确保了数据在整个生命周期内的质量、一致性和可用性,从而提升了智能体决策的准确性和业务运营的效率。
智能体推理层
逻辑推理是大模型的优势之一,在大部分情况下,数据加上大模型推理会给出很理想的结果建议和方案,会比人工快得多。针对每个不一样的业务流程节点上,针对性的定制化不同业务场景的智能体,由数据采集再到逻辑的推理,给出初步的结果方案或是执行方式。
业务逻辑层
以基础的智能体平台为依托,它是一个类似于员工的角色来不停的为业务的每个节点切入,不停的在业务里面深入了解和学习,还有不停的进行执行。

最低0.47元/天 解锁文章
918

被折叠的 条评论
为什么被折叠?



