掌握React的基本使用,重塑前端开发

本文深入讲解React中的事件处理、条件渲染、列表与keys、表单控制、状态提升及组件组合等核心概念,通过实例帮助读者掌握React应用构建的关键技巧。

1. Handling Events

Html中处理添加事件:

<a href="#" onclick="console.log('The link was clicked.'); return false">
  Click me
</a>

React中:

function ActionLink() {
  function handleClick(e) { 
      e.preventDefault();  
      console.log('The link was clicked.');  
  }
  return (
    <a href="#" onClick={handleClick}> Click me </a>
  );
}

2. Conditional Rendering

  • 根据不同条件,渲染不同的组件

  • 如果组件的返回值为null,则不渲染该组件

function UserGreeting(props) {
  return <h1>Welcome back!</h1>;
}

function GuestGreeting(props) {
  return <h1>Please sign up.</h1>;
}

function Greeting(props) {
  const isLoggedIn = props.isLoggedIn;
  if (isLoggedIn) {
    return <UserGreeting />;
  }
  return <GuestGreeting />;
}

ReactDOM.render(
  // Try changing to isLoggedIn={true}:
  <Greeting isLoggedIn={false} />,
  document.getElementById('root')
);

3. Lists and Keys

React中渲染列表,简单粗暴:

function NumberList(props) {
  const numbers = props.numbers;
  const listItems = numbers.map((number) =>
    <li key={number.toString()}>{number}</li>
  );
  return (
    <ul>{listItems}</ul>
  );
}

const numbers = [1, 2, 3, 4, 5];
ReactDOM.render(
  <NumberList numbers={numbers} />,
  document.getElementById('root')
);

That it is! cool!

注意遍历时要给elementkey属性,否则控制台会报警告。

4. Forms

An input form element whose value is controlled by React in this way is called a “controlled component

class NameForm extends React.Component {
  constructor(props) {
    super(props);
    this.state = {value: ''};

    this.handleChange = this.handleChange.bind(this);
    this.handleSubmit = this.handleSubmit.bind(this);
  }

  handleChange(event) {
    this.setState({value: event.target.value});
  }

  handleSubmit(event) {
    alert('A name was submitted: ' + this.state.value);
    event.preventDefault();
  }

  render() {
    return (
      <form onSubmit={this.handleSubmit}>
        <label>
          Name:
          <input type="text" value={this.state.value} onChange={this.handleChange} />
        </label>
        <input type="submit" value="Submit" />
      </form>
    );
  }
}

input,textarea,select都是以上述的方式被React控制的:value={this.state,value} onChange={this.handleChange}

5. Lifting State Up

将多个组件共享的数据提升至 离这些组件最近的共同父组件中进行管理。

There should be a single “source of truth” for any data that changes in a React application. Usually, the state is first added to the component that needs it for rendering. Then, if other components also need it, you can lift it up to their closest common ancestor. Instead of trying to sync the state between different components, you should rely on the top-down data flow.

官网demo是个非常好的例子:

在这里插入图片描述

6. Composition vs Inheritance

Remember that components may accept arbitrary props, including primitive values, React elements, or functions.

React的组件的compositionprops组合起来用,而不是用继承,如下demo:

function Dialog(props) {
  return (
    <FancyBorder color="blue">
      <h1 className="Dialog-title">
        {props.title}
      </h1>
      <p className="Dialog-message">
        {props.message}
      </p>
    </FancyBorder>
  );
}

function WelcomeDialog() {
  return (
    <Dialog
      title="Welcome"
      message="Thank you for visiting our spacecraft!" />
  );
}

7. Thinking In React

React change the way that Web apps should be build.

UI -> Web apps 四步:

  1. Break The UI Into A Component Hierarchy

    将UI结构拆解成组件结构

  2. Build A Static Version in React

    It’s best to decouple these processes because building a static version requires a lot of typing and no thinking, and adding interactivity requires a lot of thinking and not a lot of typing.

    这个阶段用不到state

  3. Identify The Minimal (but complete) Representation Of UI State

    找到state,即交互中哪些数据会改变

  4. Identify Where Your State Should Live

    state放到合适的组件中维护

  5. Add Inverse Data Flow

    如果有反向数据流,即子组件影响父组件内的状态,传回调函数给子组件去影响父组件的值

更多issues

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值