昇思25天学习打卡营第20天|linchenfengxue

文本解码原理--以MindNLP为例

自回归语言模型

一个文本序列的概率分布可以分解为每个词基于其上文的条件概率的乘积

  • 𝑊_0:初始上下文单词序列
  • 𝑇: 时间步
  • 当生成EOS标签时,停止生成。

MindNLP/huggingface Transformers提供的文本生成方法

Greedy search

在每个时间步𝑡都简单地选择概率最高的词作为当前输出词:

𝑤𝑡=𝑎𝑟𝑔𝑚𝑎𝑥_𝑤 𝑃(𝑤|𝑤(1:𝑡−1))

按照贪心搜索输出序列("The","nice","woman") 的条件概率为:0.5 x 0.4 = 0.2

缺点: 错过了隐藏在低概率词后面的高概率词,如:dog=0.5, has=0.9 ![image.png](attachment:image.png =600x600)

Beam search

Beam search通过在每个时间步保留最可能的 num_beams 个词,并从中最终选择出概率最高的序列来降低丢失潜在的高概率序列的风险。如图以 num_beams=2 为例:

("The","dog","has") : 0.4 * 0.9 = 0.36

("The","nice","woman") : 0.5 * 0.4 = 0.20

优点:一定程度保留最优路径

缺点:1. 无法解决重复问题;2. 开放域生成效果差

Beam search issues  

缺点:1. 无法解决重复问题;2. 开放域生成效果差

Repeat problem  

n-gram 惩罚:

将出现过的候选词的概率设置为 0

设置no_repeat_ngram_size=2 ,任意 2-gram 不会出现两次

Notice: 实际文本生成需要重复出现

Sample

根据当前条件概率分布随机选择输出词𝑤_𝑡

("car") ~P(w∣"The") ("drives") ~P(w∣"The","car") 

优点:文本生成多样性高

缺点:生成文本不连续

Temperature 降低softmax 的temperature使 P(w∣w1:t−1​)分布更陡峭

增加高概率单词的似然并降低低概率单词的似然

TopK sample

选出概率最大的 K 个词,重新归一化,最后在归一化后的 K 个词中采样 

TopK sample problems

将采样池限制为固定大小 K :

  • 在分布比较尖锐的时候产生胡言乱语
  • 在分布比较平坦的时候限制模型的创造力

Top-P sample

在累积概率超过概率 p 的最小单词集中进行采样,重新归一化

采样池可以根据下一个词的概率分布动态增加和减少

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值