PAT 1046 Shortest Distance

最淳朴的想法,把两个出口,正向走,方向走的距离都累加求和算出来,然后比较输出较小的

#include<iostream>
#include<vector>
using namespace std;

int main()
{
	int num;
	cin >> num;
	int tmp;
	int sum = 0;
	vector<int> vec;
	
	for (int i = 0; i < num; ++i)
	{
		cin >> tmp;
		vec.push_back(tmp);
		sum += tmp;
		
	}
	int num2;
	int exit1;
	int exit2;
	
	int tmpsum1 = 0;
	int tmpsum2 = 0;
	cin >> num2;
	for (int j = 0; j < num2; ++j)
	{
		cin >> exit1 >> exit2;
		if (exit1 > exit2)
			swap(exit1, exit2);
		int k;

		for (k = exit1 - 2; k >= 0; --k)
		{
			tmpsum2 += vec[k];
		}
		for (k = exit2 - 1; k <= num - 1; ++k)
		{
			tmpsum2 += vec[k];
		}
		for (k = exit1 - 1; k < exit2 - 1; ++k)
		{
			tmpsum1 += vec[k];

		}
		cout << (tmpsum1 < tmpsum2 ? tmpsum1 : tmpsum2) << endl;
		tmpsum1 = 0;
		tmpsum2 = 0;

	}

	return 0;
}

效率很低,第三个case超时了,然后改了一下,先累加反向,然后再累加正向距离的 发现tmpsum1 > tmpsum2 的时候就不必再加了

	for (k = exit1 - 1; k < exit2 - 1; ++k)
		{
			tmpsum1 += vec[k];
			if (tmpsum1 >= tmpsum2)
				break;

		}
应该是快了一点,但还是超时,那再减少累加次数, 因为是环的  只累加正向或反方向中的一个,如果tmpsum > half 那另一个方向的总距离 一定较小


int main()
{
	int num;
	cin >> num;
	int tmp;
	int sum = 0;
	vector<int> vec;

	for (int i = 0; i < num; ++i)
	{
		cin >> tmp;
		vec.push_back(tmp);
		sum += tmp;

	}
	int half = sum / 2;
	int num2;
	int exit1;
	int exit2;

	int tmpsum = 0;

	cin >> num2;

	for (int j = 0; j < num2; ++j)
	{
		cin >> exit1 >> exit2;
		if (exit1 > exit2)
			swap(exit1, exit2);
		int k;

		for (k = exit1 - 1; k < exit2 - 1; ++k)
		{
			tmpsum += vec[k];
		

		}	
		if (tmpsum > half)
		tmpsum = sum - tmpsum;
		cout << tmpsum  << endl;
		tmpsum = 0;


	}

	return 0;
}
然而这也没什么卵用,还是超时。。。 其实程序代价最大的地方在于,对于每一个给定的 两个出口  都要去累加求距离总和,这里其实 重复计算了很多次。 就像用递归去算斐波那契数列,时间都浪费在重复的计算上,借鉴求斐波那契数列的解法,哭考虑把计算出来的和存起来,然后看人家是这么写的

#include<stdio.h>
#include<stdlib.h>
using namespace std;
int main(void)
{
	int N,M;
	scanf("%d",&N);
	int i;
	int *dist=(int*)malloc(sizeof(int)*N);
	int sum=0;
	for(i=0;i<N;i++)
	{
		scanf("%d",dist+i);
		sum+=dist[i];
		dist[i]=sum;
	}
	int halfsum=sum/2;


	scanf("%d",&M);
	for(i=0;i<M;i++)
	{
		int d1,d2;
		scanf("%d %d",&d1,&d2);
		if(d1>d2)
		{
			int temp=d2;
			d2=d1;
			d1=temp;
		}
		int d;
		if(d1==1)
			d=dist[d2-2];
		else
			d=dist[d2-2]-dist[d1-2];
		if(d>halfsum)
			d=sum-d;
		if(i!=0)
			printf("\n");
		printf("%d",d);
	}
	return 0;
}



## 软件功能详细介绍 1. **文本片段管理**:可以添加、编辑、删除常用文本片段,方便快速调用 2. **分组管理**:支持创建多个分组,不同类型的文本片段可以分类存储 3. **热键绑定**:为每个文本片段绑定自定义热键,实现一键粘贴 4. **窗口置顶**:支持窗口置顶功能,方便在其他应用程序上直接使用 5. **自动隐藏**:可以设置自动隐藏,减少桌面占用空间 6. **数据持久化**:所有配置和文本片段会自动保存,下次启动时自动加载 ## 软件使用技巧说明 1. **快速添加文本**:在文本输入框中输入内容后,点击"添加内容"按钮即可快速添加 2. **批量管理**:可以同时编辑多个文本片段,提高管理效率 3. **热键冲突处理**:如果设置的热键与系统或其他软件冲突,会自动提示 4. **分组切换**:使用分组按钮可以快速切换不同类别的文本片段 5. **文本格式化**:支持在文本片段中使用换行符和制表符等格式 ## 软件操作方法指南 1. **启动软件**:双击"大飞哥软件自习室——快捷粘贴工具.exe"文件即可启动 2. **添加文本片段**: - 在主界面的文本输入框中输入要保存的内容 - 点击"添加内容"按钮 - 在弹出的对话框中设置热键和分组 - 点击"确定"保存 3. **使用热键粘贴**: - 确保软件处于运行状态 - 在需要粘贴的位置按下设置的热键 - 文本片段会自动粘贴到当前位置 4. **编辑文本片段**: - 选中要编辑的文本片段 - 点击"编辑"按钮 - 修改内容或热键设置 - 点击"确定"保存修改 5. **删除文本片段**: - 选中要删除的文本片段 - 点击"删除"按钮 - 在确认对话框中点击"确定"即可删除
Every year the cows hold an event featuring a peculiar version of hopscotch that involves carefully jumping from rock to rock in a river. The excitement takes place on a long, straight river with a rock at the start and another rock at the end, L units away from the start (1 ≤ L ≤ 1,000,000,000). Along the river between the starting and ending rocks, N (0 ≤ N ≤ 50,000) more rocks appear, each at an integral distance Di from the start (0 < Di < L). To play the game, each cow in turn starts at the starting rock and tries to reach the finish at the ending rock, jumping only from rock to rock. Of course, less agile cows never make it to the final rock, ending up instead in the river. Farmer John is proud of his cows and watches this event each year. But as time goes by, he tires of watching the timid cows of the other farmers limp across the short distances between rocks placed too closely together. He plans to remove several rocks in order to increase the shortest distance a cow will have to jump to reach the end. He knows he cannot remove the starting and ending rocks, but he calculates that he has enough resources to remove up to M rocks (0 ≤ M ≤ N). FJ wants to know exactly how much he can increase the shortest distance *before* he starts removing the rocks. Help Farmer John determine the greatest possible shortest distance a cow has to jump after removing the optimal set of M rocks. Input Line 1: Three space-separated integers: L, N, and M Lines 2..N+1: Each line contains a single integer indicating how far some rock is away from the starting rock. No two rocks share the same position. Output Line 1: A single integer that is the maximum of the shortest distance a cow has to jump after removing M rocks Sample Inputcopy Outputcopy 25 5 2 2 14 11 21 17 4 Hint Before removing any rocks, the shortest jump was a jump of 2 from 0 (the start) to 2. After removing the rocks at 2 and 14, the shortest required jump is a jump of 4 (from 17 to 21 or from 21 to 25).
07-24
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值