机器学习实战指南:基于《machine-learning-yearning》

机器学习实战指南:基于《machine-learning-yearning》

machine-learning-yearningMachine Learning Yearning book by 🅰️𝓷𝓭𝓻𝓮𝔀 🆖项目地址:https://gitcode.com/gh_mirrors/mac/machine-learning-yearning

项目介绍

本项目来源于GitHub仓库 ajaymache/machine-learning-yearning,它是基于Andrew Ng教授的“Machine Learning Yearning”电子书思想实现的一系列实践代码。这个开源项目旨在帮助开发者和数据科学家通过动手实践来掌握机器学习的关键概念和技术。它覆盖了从基础模型到高级策略,适合于初学者到进阶者的不同层次的学习者。

项目快速启动

要快速开始使用此项目,请确保您已安装Python环境及必要的库如TensorFlow或PyTorch(具体依赖请参照项目readme文件)。以下是基本步骤:

首先,克隆项目到本地:

git clone https://github.com/ajaymache/machine-learning-yearning.git
cd machine-learning-yearning

然后,安装项目所需的依赖。通常,这可以通过查看项目的requirements.txt文件并使用pip进行安装完成:

pip install -r requirements.txt

接下来,您可以尝试运行一个简单的示例。以其中的一个基础线性回归示例为例(假设该示例位于examples目录下):

# 假设有一个example.py文件
python examples/example.py

请注意,实际命令和路径应根据项目结构进行调整。

应用案例和最佳实践

项目中包含了多种应用场景的代码实例,例如分类、回归、神经网络等。通过对这些案例的研究,可以学到如何选择合适的模型、如何调参以及评估模型性能的最佳实践。推荐从最基础的例子开始,逐步过渡到复杂的案例,同时关注项目文档中的指导和建议。

示例:简单线性回归

在机器学习入门阶段,理解线性回归至关重要。项目提供的简单线性回归例子展示了如何利用最少的数据点拟合一条直线,并评估其准确性。

典型生态项目

虽然直接从上述仓库中可能不明确看出“典型生态项目”,但基于该项目的学习者往往会延伸到其他相关的开源生态系统,比如Scikit-Learn用于经典机器学习任务,Keras或TensorFlow用于深度学习,参与社区的讨论和贡献,如GitLab上的其他机器学习库,或是开发自己的扩展模块。这些构成了围绕机器学习的广泛生态,鼓励着实践者不断探索和创新。


以上就是对《machine-learning-yearning》项目的简明教程概览,深入每个部分将带来更丰富的学习体验。记得查阅项目文档和注释,它们是了解细节的关键。

machine-learning-yearningMachine Learning Yearning book by 🅰️𝓷𝓭𝓻𝓮𝔀 🆖项目地址:https://gitcode.com/gh_mirrors/mac/machine-learning-yearning

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

Table of Contents (draft) Why Machine Learning Strategy 4 ........................................................................................... How to use this book to help your team 6 ................................................................................ Prerequisites and Notation 7 .................................................................................................... Scale drives machine learning progress 8 ................................................................................ Your development and test sets 11 ............................................................................................ Your dev and test sets should come from the same distribution 13 ........................................ How large do the dev/test sets need to be? 15 .......................................................................... Establish a single-number evaluation metric for your team to optimize 16 ........................... Optimizing and satisficing metrics 18 ..................................................................................... Having a dev set and metric speeds up iterations 20 ............................................................... When to change dev/test sets and metrics 21 .......................................................................... Takeaways: Setting up development and test sets 23 .............................................................. Build your first system quickly, then iterate 25 ........................................................................ Error analysis: Look at dev set examples to evaluate ideas 26 ................................................ Evaluate multiple ideas in parallel during error analysis 28 ................................................... If you have a large dev set, split it into two subsets, only one of which you look at 30 ........... How big should the Eyeball and Blackbox dev sets be? 32 ...................................................... Takeaways: Basic error analysis 34 .......................................................................................... Bias and Variance: The two big sources of error 36 ................................................................. Examples of Bias and Variance 38 ............................................................................................ Comparing to the optimal error rate 39 ................................................................................... Addressing Bias and Variance 41 .............................................................................................. Bias vs. Variance tradeoff 42 ..................................................................................................... Techniques for reducing avoidable bias 43 .............................................................................. Techniques for reducing Variance 44 ....................................................................................... Error analysis on the training set 46 ........................................................................................ Diagnosing bias and variance: Learning curves 48 ................................................................. Plotting training error 50 .......................................................................................................... Interpreting learning curves: High bias 51 ............................................................................... Interpreting learning curves: Other cases 53 .......................................................................... Plotting learning curves 55 ....................................................................................................... Why we compare to human-level performance 58 .................................................................. How to define human-level performance 60 ........................................................................... Surpassing human-level performance 61 ................................................................................ Why train and test on different distributions 63 ...................................................................... Page!2 Machine Learning Yearning-Draft V0.5 Andrew NgWhether to use all your data 65 ................................................................................................ Whether to include inconsistent data 67 .................................................................................. Weighting data 68 .................................................................................................................... Generalizing from the training set to the dev set 69 ................................................................ Addressing Bias and Variance 71 ............................................................................................. Addressing data mismatch 72 ................................................................................................... Artificial data synthesis 73 ........................................................................................................ The Optimization Verification test 76 ...................................................................................... General form of Optimization Verification test 78 ................................................................... Reinforcement learning example 79 ......................................................................................... The rise of end-to-end learning 82 ........................................................................................... More end-to-end learning examples 84 .................................................................................. Pros and cons of end-to-end learning 86 ................................................................................ Learned sub-components 88 .................................................................................................... Directly learning rich outputs 89 .............................................................................................. Error Analysis by Parts 93 ....................................................................................................... Beyond supervised learning: What’s next? 94 ......................................................................... Building a superhero team - Get your teammates to read this 96 ........................................... Big picture 98 ............................................................................................................................ Credits 99
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郎沙圣Sebastian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值