llm-compressor:模型优化利器,加速推理效率
llm-compressor 项目地址: https://gitcode.com/gh_mirrors/ll/llm-compressor
项目介绍
llmcompressor
是一个易于使用的库,旨在优化模型以配合 vllm
进行部署。它为用户提供了全面的量化算法,包括针对权重和激活的量化,以及与 Hugging Face 模型和仓库的无缝集成。通过 safetensors
文件格式支持大模型,并兼容 vllm
。无论是从性能优化还是易用性出发,llmcompressor
都是一个不可多得的开源工具。
项目技术分析
核心功能
llmcompressor
的核心功能包括:
- 权重和激活的全面量化算法集
- 与 Hugging Face 模型和仓库的无缝集成
- 基于
safetensors
的文件格式,与vllm
兼容 - 大模型支持,通过
accelerate
实现
支持的格式和算法
llmcompressor
支持以下格式和算法:
- 格式:激活量化支持 W8A8(int8 和 fp8),混合精度支持 W4A16、W8A16,以及 2:4 半结构化和非结构化稀疏。
- 算法:包括 Simple PTQ、GPTQ、SmoothQuant 和 SparseGPT。
量化方案选择
具体使用哪种优化方案,可以参考项目文档中的 schemes.md
,以获取关于可用优化方案及其应用场景的详细信息。
项目及技术应用场景
llmcompressor
适用于多种场景,主要包括:
- 模型部署:通过量化,减少模型大小和推理时间,适合在资源受限的设备上进行部署。
- 推理加速:在服务器端,量化后的模型可以加速推理过程,提高整体性能。
- 多模态模型量化:支持音频-语言和视觉-语言等多模态模型的量化。
项目特点
- 全面的量化算法:支持多种量化算法,用户可以根据模型和任务需求灵活选择。
- 无缝集成:与 Hugging Face 模型和仓库的无缝集成,使得量化过程更加便捷。
- 大模型支持:通过
accelerate
,支持大模型的量化,进一步扩大了适用范围。 - 易于使用:提供了详细的安装指南和端到端的示例,用户可以快速上手。
以下是 llmcompressor
的具体使用示例:
安装
pip install llmcompressor
快速开始
使用 llmcompressor
对 TinyLlama
模型进行量化:
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor import oneshot
# 选择量化算法
recipe = [
SmoothQuantModifier(smoothing_strength=0.8),
GPTQModifier(scheme="W8A8", targets="Linear", ignore=["lm_head"]),
]
# 应用量化
oneshot(
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
dataset="open_platypus",
recipe=recipe,
output_dir="TinyLlama-1.1B-Chat-v1.0-INT8",
max_seq_length=2048,
num_calibration_samples=512,
)
推理
使用量化后的模型进行推理:
pip install vllm
from vllm import LLM
model = LLM("TinyLlama-1.1B-Chat-v1.0-INT8")
output = model.generate("My name is")
llmcompressor
的出现,为模型优化和推理加速提供了新的解决方案。其全面的量化算法和无缝的集成能力,使得它成为开发者手中的得力工具。如果您正在寻找一种有效的方式来优化您的模型,并提升推理效率,那么 llmcompressor
绝对值得一试。
llm-compressor 项目地址: https://gitcode.com/gh_mirrors/ll/llm-compressor
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考