探秘Bayesian数据分析实践: Aloctavodia的`Doing Bayesian Data Analysis`

探秘Bayesian数据分析实践: Aloctavodia的Doing Bayesian Data Analysis

去发现同类优质开源项目:https://gitcode.com/

该项目在上开源,是一个以Python为基础的实践教程,旨在帮助数据科学爱好者和专业人士理解并应用贝叶斯统计方法进行数据分析。作者Aloctavodia巧妙地将理论与代码相结合,让你在实践中深化对Bayesian数据分析的理解。

项目简介

Doing Bayesian Data Analysis不仅仅是一个普通的教材,它是一系列精心设计的Jupyter Notebook,每个Notebook都包含完整的数据分析案例,从数据预处理到模型构建,再到结果解释,一应俱全。项目使用的库主要是PyMC3,这是一个强大的、用于贝叶斯建模的Python库,非常适合进行复杂的概率编程。

技术分析

  1. PyMC3: 项目的核心工具,是基于Theano的贝叶斯推理框架。PyMC3提供了灵活的模型定义方式,并且能自动进行后验分布的采样,使得复杂的贝叶斯模型变得易于理解和实现。

  2. Jupyter Notebook: 采用交互式的学习环境,让学习者可以边看边动手,每一步都能看到即时的结果,增强了学习的直观性和乐趣。

  3. Bayesian Statistics: 贝叶斯统计是一种更新我们信念关于未知参数的方法,通过结合先验信息(已有的知识)和新观测的数据,我们可以得到一个更精确的后验分布。这种方法特别适合于小样本数据和不确定性较大的情况。

  4. Data Science Applications: 项目中的案例涵盖了各种应用场景,如心理学实验、医学研究、机器学习等,让读者能够看到贝叶斯方法在实际问题中的应用价值。

可以用来做什么?

  • 模型选择:贝叶斯方法可以帮助你评估不同模型的相对可能性,而不仅仅是找到最佳拟合的单一模型。
  • 不确定性量化:提供模型参数的完整分布,不仅给出点估计,还能提供置信区间或预测带。
  • 解释性更强:通过对先验和后验分布的理解,能更好地解释模型的行为和结果。
  • 在线学习:随着新的数据不断出现,贝叶斯方法可以轻松地更新模型。

特点

  1. 实战导向:每个章节都有配套的Python代码,可以直接运行和修改,从而加深理解。
  2. 丰富的实例:涵盖多种领域的案例,使得学习更加生动有趣。
  3. 清晰的讲解:代码注释详尽,理论部分也讲解得深入浅出,既适合初学者,也适合有一定基础的进阶者。
  4. 持续更新:随着PyMC3和相关库的发展,项目会定期更新,保证了最新技术的应用。

无论是数据科学家,还是对贝叶斯统计感兴趣的科研人员或学生,都可以从这个项目中获益。立即打开链接,开始你的贝叶斯数据分析之旅吧!让我们一起探索这一强大而富有洞察力的统计方法在现代数据科学中的无限可能。

去发现同类优质开源项目:https://gitcode.com/

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. The text delivers comprehensive coverage of all scenarios addressed by non-Bayesian textbooks--t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). This book is intended for first year graduate students or advanced undergraduates. It provides a bridge between undergraduate training and modern Bayesian methods for data analysis, which is becoming the accepted research standard. Prerequisite is knowledge of algebra and basic calculus. Free software now includes programs in JAGS, which runs on Macintosh, Linux, and Windows. Author website: http://www.indiana.edu/~kruschke/DoingBayesianDataAnalysis/ -Accessible, including the basics of essential concepts of probability and random sampling -Examples with R programming language and BUGS software -Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). -Coverage of experiment planning -R and BUGS computer programming code on website -Exercises have explicit purposes and guidelines for accomplishment
There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis tractable and accessible to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS, is for first year graduate students or advanced undergraduates and provides an accessible approach, as all mathematics is explained intuitively and with concrete examples. It assumes only algebra and ‘rusty’ calculus. Unlike other textbooks, this book begins with the basics, including essential concepts of probability and random sampling. The book gradually climbs all the way to advanced hierarchical modeling methods for realistic data. The text provides complete examples with the R programming language and BUGS software (both freeware), and begins with basic programming examples, working up gradually to complete programs for complex analyses and presentation graphics. These templates can be easily adapted for a large variety of students and their own research needs.The textbook bridges the students from their undergraduate training into modern Bayesian methods. Accessible, including the basics of essential concepts of probability and random sampling Examples with R programming language and BUGS software Comprehensive coverage of all scenarios addressed by non-bayesian textbooks- t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis). Coverage of experiment planning R and BUGS computer programming code on website Exercises have explicit purposes and guidelines for accomplishment 作者从概率统计和编程两方面入手,由浅入深地指导读者如何对实际数据进行贝叶斯分析。全书分成三部分,第一部分为基础篇:关于参数、概率、贝叶斯法则及R软件,第二部分为二元比例推断的基本理论,第三部分为广义线性模型。内容包括贝叶斯统计的基本理论、实验设计的有关知识、以层次模型和MCMC为代表的复杂方法等。同时覆盖所有需要用到非贝叶斯方法的情况,其中包括:t检验,方差分析(ANOVA)和ANOVA中的多重比较法,多元线性回归,Logistic回归,序列回归和卡方(列联表)分析。针对不同的学习目标(如R、BUGS等)列出了相应的重点章节;整理出贝叶斯统计中某些与传统统计学可作类比的内容,方便读者快速学习。本中提出的方法都是可操作的,并且所有涉及数学理论的地方都已经用实际例子非常直观地进行了解释。由于并不对读者的统计或编程基础有较高的要求,因此本书非常适合社会学或生物学研究者入门参考,同时也可作为相关科研人员的参考书。
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes’ rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. Accessible, including the basics of essential concepts of probability and random sampling Examples with R programming language and JAGS software Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) Coverage of experiment planning R and JAGS computer programming code on website Exercises have explicit purposes and guidelines for accomplishment Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金畏战Goddard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值