rsatool - 简单、高效的RSA工具

本文介绍了rsatool,一个用于生成RSA密钥对、加密解密和验证数字签名的轻量级工具,基于C语言,支持Linux和macOS,提供高效性能和易用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

rsatool - 简单、高效的RSA工具

项目地址:https://gitcode.com/gh_mirrors/rs/rsatool

rsatool 是一个简单而高效的 RSA 工具,可以用于生成 RSA 密钥对、加密解密数据以及签署验证数字签名等操作。它是一个命令行工具,适用于 Linux 和 macOS 操作系统。

功能与用途

  • 生成 RSA 密钥对:rsatool 可以方便地生成指定长度的 RSA 密钥对。
  • 加密解密数据:您可以使用 rsatool 加密和解密文件或文本数据。
  • 签署验证数字签名:rsatool 支持使用私钥签署数据以及使用公钥验证数字签名。

有了 rsatool,您可以在日常工作中轻松处理 RSA 密钥相关的任务,比如加密敏感信息、保护软件包或者验证代码签名等。

特点

  1. 简洁易用:rsatool 提供了清晰明了的命令语法,让使用者能够快速上手。
  2. 高效性能:由于 rsatool 基于 C 语言编写,因此它的执行效率非常高,即使处理大型数据也非常迅速。
  3. 跨平台支持:rsatool 可以在 Linux 和 macOS 上运行,适合各种开发环境。

如何开始?

要开始使用 rsatool,请按照以下步骤操作:

  1. 克隆项目仓库:
$ git clone .git
  1. 进入 rsatool 目录并编译源码:
$ cd rsatool
$ make
  1. rsatool 可执行文件复制到 /usr/local/bin 或者其他 PATH 路径包含的位置,以便全局访问:
$ sudo cp rsatool /usr/local/bin/

现在您已经成功安装了 rsatool,并可以通过命令行直接调用它。


rsatool 是一个强大且易于使用的 RSA 工具,为您的日常工作提供了便利。尝试一下 rsatool,让我们知道您对此有何反馈!

项目链接:

祝您好运!

rsatool rsatool: 一个用于计算RSA密码学参数(包括公钥和私钥组件)的工具,可以将参数输出为OpenSSL兼容的DER或PEM编码的RSA私钥。 项目地址: https://gitcode.com/gh_mirrors/rs/rsatool

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

RSA-Tool 2 Copyright ?2000-2002 by tE! [TMG] Introduction Please read this text carefully. This utility has been made for those who want to use the RSA public key algorithm in their own programs. It offers creation of strong keypairs and a nice integer factorization feature which makes use of several differnt factoring methods including the MPQS. It's possible to factor integers +256 bits in size but please keep in mind that this can take a *lot* of memory and time ! Thus it's not recommended to try factoring bigger numbers on slow machines with a few MB of physical Memory. Don't even think of trying to factor 512 bit numbers for example.. RSA-Tool 2 Features: - Secure keypair generation - Key test dialog - Support of multiple number bases - Auto base-conversion on select - Support of numbers up to 4096 Bits 1. About RSA RSA is a Public Key Cryptosystem developed in 1977 by Ronald Rivest, Adi Shamir and Leonard Adleman. Since 09-20-2000 the U.S. Patent #4,405,829 on this Algorithm EXPIRED! That means that the Algorithm is Public Domain now and can be used by everyone for free, even in commercial software. 2. Parameters P = 1st large prime number Q = 2nd large prime number (sizes of P and Q should not differ too much!) E = Public Exponent (a random number which must fulfil: GCD(E, (P-1)*(Q-1))==1) N = Public Modulus, the product of P and Q: N=P*Q D = Private Exponent: D=E^(-1) mod ((P-1)*(Q-1)) Parameters N and E are public whereas D is -private- and must NEVER be published! P and Q are not longer needed after keygeneration and should be destroyed. To obtain D from the public key (N, E) one needs to try splitting N in its both prime factors P and Q. For a large Modulus N (512 bit and more) with carefully chosen primefactors P and Q this is a very difficult problem. All the security of the RSA encryption scheme relies on that integer factorization problem (tough there's no mathematical proof for it). To fin
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢璋声Shirley

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值