数组的操作
xxx.shape()
可以通过xxx.shape()来改变数组的维数
import numpy as np
x = np.array([1, 2, 9, 4, 5, 6, 7, 8])
x.shape = [2, 4]
print(x)
# [[1 2 9 4]
# [5 6 7 8]]
xxx.flat
可以将数组转换为一维
import numpy as np
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = x.flat
for i in y:
print(i, end=' ')
# 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
y[3] = 0
print(end='\n')
print(x)
# [[11 12 13 0 15]
# [16 17 18 19 20]
# [21 22 23 24 25]
# [26 27 28 29 30]
# [31 32 33 34 35]]
xxx.flatten()
这个函数的作用就是拷贝复制的作用,可以对比一下上一个例子中xxx.flat两个不同的区别。在于后面的索引的时候,这个函数并不会改变,而上一个函数同样的操作却会改变。
import numpy as np
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = x.flatten()
print(y)
# [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# 35]
y[3] = 0
print(x)
# [[11 12 13 14 15]
# [16 17 18 19 20]
# [21 22 23 24 25]
# [26 27 28 29 30]
# [31 32 33 34 35]]
数组转置
线性代数中有一个知识点就是矩阵的转置,那在numpy中也是可以实现转置功能的。
语法:
np.transpose()
import numpy as np
a = np.arange(2, 14).reshape((3,4))
print(a)
'''
[[ 2 3 4 5]
[ 6 7 8 9]
[10 11 12 13]]
'''
print(np.transpose(a))
'''
[[ 2 6 10]
[ 3 7 11]
[ 4 8 12]
[ 5 9 13]]
'''
数组拼接
将两个数组进行拼接可以使用下面的方法
np.concatenate([x, y])
import numpy as np
x = np.array([1, 2, 3])
y = np.array([7, 8, 9])
z = np.concatenate([x, y])
print(z)
# [1 2 3 7 8 9]
z = np.concatenate([x, y], axis=0)
print(z)
# [1 2 3 7 8 9]
如果是一维的数组加后也是一维的数组
原来是二维的数组拼接后也是二维的数组
import numpy as np
x = np.array([1, 2, 3]).reshape(1, 3)
y = np.array([7, 8, 9]).reshape(1, 3)
z = np.concatenate([x, y])
print(z)
'''
[[ 1 2 3]
[ 7 8 9]]
'''
z = np.concatenate([x, y], axis=0)
print(z)
'''
[[ 1 2 3]
[ 7 8 9]]
'''
数组拆分
import numpy as np
x = np.array([[11, 12, 13, 14],
[16, 17, 18, 19],
[21, 22, 23, 24]])
y = np.split(x, [1, 3])
print(y)
'''
[array([[11, 12, 13, 14]]), array([[16, 17, 18, 19],
[21, 22, 23, 24]]), array([], shape=(0, 4), dtype=int32)]
'''
y = np.split(x, [1, 3], axis=1)
print(y)
'''
[array([[11],
[16],
[21]]), array([[12, 13],
[17, 18],
[22, 23]]), array([[14],
[19],
[24]])]
'''