制作一个分类mnist0和6的网络,向这个网络分别加上1-8个卷积核,在网络迭代停止标准同样的前提下网络的迭代次数与卷积核的数量之间有什么关系?
网络的结构是
(mnist 0 ,mnist6)81-con(3*3)*n-(49*n)-2-(1,0) || (0,1)
将mnist的28*28的图片变成9*9的向这个网络上加n个3*3的卷积核,隐藏层节点数是49*n,让0向(1,0)收敛,让6向(0,1)收敛
(mnist 0 ,mnist6)81-30-2-(1,0) || (0,1)
另外制作了一个81*30*2的网络来分辨0和6用以比较卷积核对网络性能的影响。
网络迭代的停止标准是
网络的输出值-目标函数<δ,让δ分别等于0.5到1e-6的34个值。
每个δ收敛199次,统计平均值来比较迭代次数。一共收敛了9*34*199次。
得到的迭代次数表格
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
δ | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n | 迭代次数n |
0.5 | 8.6834171 | 17.653266 | 15.160804 | 14.020101 | 12.58794 | 14.140704 | 12.919598 | 10.718593 | 11.748744 |
0.4 | 215.15578 | 1768.7487 | 1121.4472 | 865.26131 | 733.18593 | 658.62312 | 585.07035 | 536.05025 | 478.55276 |
0.3 | 273.73367 | 1982.9045 | 1295.5377 | 1038.5176 | 890.37688 | 765.37688 | 702.85427 | 634.21106 | 587.14573 |
0.2 | 325.48241 | 2103.8141 | 1438.6935 | 1180.0653 | 986.23618 | 854.98492 | 767.59296 | 735.8191 | 660.33166 |
0.1 | 395.69347 | 2265.0452 | 1636.8593 | 1280.7387 | 1103.4271 | 975.64322 | 897.45729 | 830.28643 | 761.88442 |
0.01 | 724.24121 | 2886.7286 | 2070.7035 | 1728.4221 | 1445.1156 | 1306.7739 | 1228.6432 | 1155.2412 | 1089.1055 |
0.001 | 1678.2161 | 3658.6583 | 2828.0704 | 2433.8744 | 2222.2613 | 2105.4322 | 2000.8744 | 1900.6482 | 1850.8442 |
9.00E-04 | 1709.4623 | 3697.0804 | 2864.4724 | 2462.201 | 2298.7236 | 2144.9698 | 2022.9749 | 1980.8945 | 1976.3819 |
8.00E-04 | 1749.9397 | 3813.1558 | 2914.995 | 2493.407 | 2321.4573 | 2208.1256 | 2137.6683 | 2087.407 | 2057.4673 |
7.00E-04 | 1818.1005 | 3888.5678 | 2995.2312 | 2557.0754 | 2397.6683 | 2306.9648 | 2219.9899 | 2137.8894 | 2146.7236 |
6.00E-04 | 1904.0151 | 4011.5427 | 3039.0854 | 2645.4874 | 2477.8291 | 2394.4925 | 2326.9146 | 2293.1809 | 2332.1307 |
5.00E-04 | 2007.0251 | 4223.5377 | 3194.1156 | 2698.5025 | 2543.8291 | 2486.7387 | 2441.3266 | 2397.9497 | 2463.608 |
4.00E-04 | 2153.5729 | 4409.8945 | 3217.6583 | 2890.5477 | 2704.2312 | 2628.5477 | 2652.5678 | 2903.3518 | 2961.0151 |
3.00E-04 | 2502.191 | 4489.7638 | 3461.4372 | 3059.5578 | 2889.191 | 2861.2312 | 2994.4874 | 3386.3467 | 4177.5779 |
2.00E-04 | 3039.9598 | 5081.8342 | 3682.6683 | 3349.2864 | 3234.9548 | 3534.8342 | 4513.4673 | 7070.6533 | 10733.593 |
1.00E-04 | 4244.5025 | 5911.2362 | 4740.4221 | 4387.6533 | 4811.5628 | 9440.9045 | 16928.744 | 29130.492 | 40165.648 |
9.00E-05 | 4611.0151 | 6024.4271 | 4853.2211 | 4814.2714 | 6531.1106 | 11996.367 | 24860.623 | 34127.09 | 44416.598 |
8.00E-05 | 4979.8241 | 6175.6784 | 5145.1558 | 5058.3568 | 8094.7387 | 14235.196 | 29252.834 | 42216.266 | 50695.99 |
7.00E-05 | 5582.4171 | 6444.5327 | 5445.4121 | 5416.7286 | 9838.5779 | 20839.156 | 33675.377 | 47500.402 | 56677.281 |
6.00E-05 | 6007.1307 | 6834.995 | 5599.6482 | 6069.0302 | 14818.447 | 26168.302 | 42218.839 | 52767.608 | 61309.392 |
5.00E-05 | 6695.7688 | 7156.5377 | 6186.6734 | 8016.6985 | 19580.558 | 36232.206 | 52017.734 | 63016.286 | 71553.834 |
4.00E-05 | 7538.201 | 7593.9447 | 6916.3367 | 11556.417 | 26456.271 | 45551.045 | 62405.985 | 71692.221 | 79059.467 |
3.00E-05 | 9498.8945 | 8180.5377 | 9194.1558 | 16957.412 | 43914.382 | 61174.688 | 73819.412 | 81788.327 | 89809.337 |
2.00E-05 | 11646.196 | 10213.543 | 18739.111 | 33563.231 | 59589.688 | 73215.854 | 85464.01 | 92151.834 | 102103.93 |
1.00E-05 | 22574.196 | 19651.729 | 41896.678 | 68355.231 | 83610.965 | 94331.412 | 103681.38 | 113498.92 | 121118.23 |
9.00E-06 | 25538.779 | 20885.312 | 42996.055 | 70862.427 | 90802.211 | 99530.347 | 110135.51 | 114852.65 | 121828.87 |
8.00E-06 | 27916.98 | 24642.538 | 52387.503 | 79048.739 | 93258.754 | 102546.6 | 112194.92 | 118508.33 | 126289.47 |
7.00E-06 | 31637.462 | 27518.779 | 55199.593 | 79143.04 | 98227.915 | 106279.72 | 114924.83 | 121796.6 | 130141.88 |
6.00E-06 | 36115.844 | 30032.849 | 62003.724 | 84098.618 | 98744.518 | 111379.83 | 117613.08 | 125971.36 | 132041.94 |
5.00E-06 | 40017.714 | 35112.101 | 71847.538 | 96445.819 | 105003.18 | 116716 | 122757.41 | 132598.32 | 135345.2 |
4.00E-06 | 45506.95 | 47182.432 | 79798.08 | 100823.3 | 110091.35 | 122771.86 | 131234.58 | 137044.15 | 144725.52 |
3.00E-06 | 49939.482 | 54222.628 | 87546.779 | 109876.32 | 122024.68 | 130755.47 | 138650.12 | 143233.09 | 150943.39 |
2.00E-06 | 56831.613 | 74638.523 | 106144.71 | 125012.34 | 131271.88 | 138876.47 | 147972.34 | 154632.41 | 162821.36 |
1.00E-06 | 66473.603 | 106216.3 | 128344.68 | 143039.82 | 150997.4 | 158129.72 | 165428.17 | 171266.96 | 179712.57 |
ni+1/ni | 1.5978718 | 1.2083333 | 1.1144975 | 1.0556319 | 1.0472347 | 1.0461548 | 1.035295 | 1.0493126 | |
(i+1)**0.5/i**0.5 | #DIV/0! | 1.4142136 | 1.2247449 | 1.1547005 | 1.118034 | 1.0954451 | 1.0801234 | 1.069045 |
可以看到网络的迭代次数的比是与卷积核的数量的平方根的比相关的
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
a1 | ni+1/ni | 1.597872 | 1.208333 | 1.114497 | 1.055632 | 1.047235 | 1.04615478 | 1.035295041 | 1.049312565 | |
a2 | (i+1)**0.5/i**0.5 | #DIV/0! | 1.414214 | 1.224745 | 1.154701 | 1.118034 | 1.09544512 | 1.08012345 | 1.069044968 | |
a2/a1 | 1.170384 | 1.098921 | 1.093848 | 1.067606 | 1.04711572 | 1.043300128 | 1.018805076 |
拟合卷积核的数量n与卷积核的平方根的比与迭代次数的比的比值
可以得到表达式
α=1.2352070255191652*x**-0.09098224276029905
0.961148410720695 ****** 决定系数 r**2
由此可以得到一个递推公式
由这个递推公式和n2可以得到一个一般的表达式
比如计算n4
得到表格
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
计算值 |
|
| 140635 | 149141.9 | 156281.948 | 163138.9386 | 170286.4882 | 178074.4 |
实测值 | 106216.3 | 128344.6834 | 143039.8 | 150997.4 | 158129.724 | 165428.1658 | 171266.9598 | 179712.6 |
误差 | 0.016812 | 0.012288 | 0.01168519 | 0.013838195 | 0.005724815 | 0.009115 |
然后比较不同卷积核网络的性能
首先比较平均准确率(199次收敛准确率的平均值)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
δ | 平均准确率p-ave | 平均准确率p-ave | 平均准确率p-ave | 平均准确率p-ave | 平均准确率p-ave | 平均准确率p-ave | 平均准确率p-ave | 平均准确率p-ave | 平均准确率p-ave |
0.5 | 0.5468026 | 0.5103847 | 0.5123346 | 0.5131488 | 0.5114504 | 0.5182932 | 0.5117849 | 0.5220867 | 0.5129958 |
0.4 | 0.9078701 | 0.6849651 | 0.7294289 | 0.7177529 | 0.7387401 | 0.7799342 | 0.7515078 | 0.7353615 | 0.6603088 |
0.3 | 0.9319508 | 0.8493811 | 0.8064886 | 0.7787882 | 0.7706826 | 0.809919 | 0.7931323 | 0.7657431 | 0.7061183 |
0.2 | 0.9390036 | 0.8842121 | 0.8430309 | 0.7916984 | 0.7769238 | 0.7988161 | 0.81162 | 0.7772298 | 0.7144987 |
0.1 | 0.9224502 | 0.9060291 | 0.8645705 | 0.8157428 | 0.7675996 | 0.7674544 | 0.7737086 | 0.7611769 | 0.7107208 |
0.01 | 0.9616348 | 0.8981129 | 0.8551296 | 0.7470402 | 0.6702034 | 0.739238 | 0.8318942 | 0.8050313 | 0.7327219 |
0.001 | 0.974291 | 0.8983358 | 0.8359185 | 0.797823 | 0.7839481 | 0.7290425 | 0.6929254 | 0.6490476 | 0.6299195 |
9.00E-04 | 0.9745503 | 0.8983099 | 0.843381 | 0.7896967 | 0.7741027 | 0.7383771 | 0.6959306 | 0.6793488 | 0.6586026 |
8.00E-04 | 0.9760075 | 0.9037966 | 0.8481857 | 0.7755159 | 0.7548734 | 0.7385638 | 0.7148721 | 0.7163864 | 0.6986532 |
7.00E-04 | 0.9789246 | 0.906444 | 0.8344509 | 0.7925022 | 0.7444602 | 0.7533903 | 0.7373996 | 0.7250572 | 0.7361057 |
6.00E-04 | 0.9826299 | 0.9007628 | 0.8285364 | 0.7849542 | 0.7467083 | 0.7486296 | 0.7515934 | 0.7666221 | 0.7686368 |
5.00E-04 | 0.9857855 | 0.9062495 | 0.8367612 | 0.7883795 | 0.7560558 | 0.7345292 | 0.7613558 | 0.7855454 | 0.7838859 |
4.00E-04 | 0.9842842 | 0.9164242 | 0.8273773 | 0.7892637 | 0.764374 | 0.7348015 | 0.7546842 | 0.7637595 | 0.7728555 |
3.00E-04 | 0.9814449 | 0.9094596 | 0.8283627 | 0.8011082 | 0.7834088 | 0.7493634 | 0.7363028 | 0.7583221 | 0.7865255 |
2.00E-04 | 0.9831588 | 0.9129652 | 0.8388641 | 0.82208 | 0.800001 | 0.7958471 | 0.7973588 | 0.8478071 | 0.8642334 |
1.00E-04 | 0.9788182 | 0.9342222 | 0.867695 | 0.843215 | 0.8458417 | 0.8801152 | 0.9154622 | 0.9382542 | 0.9563478 |
9.00E-05 | 0.9787949 | 0.9385317 | 0.8809216 | 0.8543362 | 0.8626362 | 0.8927481 | 0.9289248 | 0.9427556 | 0.9569831 |
8.00E-05 | 0.979845 | 0.9386069 | 0.8894861 | 0.8551867 | 0.8581089 | 0.9044889 | 0.943103 | 0.958474 | 0.9682235 |
7.00E-05 | 0.9795261 | 0.9438939 | 0.9014941 | 0.8454113 | 0.8881145 | 0.9219965 | 0.9412231 | 0.9675363 | 0.9759141 |
6.00E-05 | 0.9787768 | 0.9441739 | 0.902539 | 0.8598877 | 0.8886875 | 0.9295212 | 0.960971 | 0.9715528 | 0.975603 |
5.00E-05 | 0.9772391 | 0.9449336 | 0.9113239 | 0.8868724 | 0.9016989 | 0.944052 | 0.9662191 | 0.9797776 | 0.9796687 |
4.00E-05 | 0.9673704 | 0.9461394 | 0.921732 | 0.906138 | 0.9392836 | 0.9611395 | 0.9764301 | 0.9778666 | 0.9790568 |
3.00E-05 | 0.9658146 | 0.9385317 | 0.9248306 | 0.9210189 | 0.9573305 | 0.9703341 | 0.9780222 | 0.9785901 | 0.9785564 |
2.00E-05 | 0.9780637 | 0.9396 | 0.9291219 | 0.9434194 | 0.9694733 | 0.9725511 | 0.9756004 | 0.973526 | 0.9754785 |
1.00E-05 | 0.982954 | 0.9445499 | 0.9586503 | 0.9677516 | 0.970399 | 0.9678267 | 0.9699763 | 0.9727793 | 0.9740161 |
9.00E-06 | 0.9823265 | 0.9504385 | 0.9558033 | 0.9691906 | 0.9688276 | 0.9700074 | 0.9678501 | 0.9707334 | 0.9706608 |
8.00E-06 | 0.9823135 | 0.9505681 | 0.9611862 | 0.9679823 | 0.9661854 | 0.9667974 | 0.9692995 | 0.9716228 | 0.9698518 |
7.00E-06 | 0.9828321 | 0.9548543 | 0.9656953 | 0.9682157 | 0.9681664 | 0.9656746 | 0.9690325 | 0.9683765 | 0.9720792 |
6.00E-06 | 0.9822357 | 0.95334 | 0.9686669 | 0.9727508 | 0.9683324 | 0.9658172 | 0.9672537 | 0.9701604 | 0.9742028 |
5.00E-06 | 0.9832781 | 0.9545457 | 0.9724785 | 0.9710576 | 0.9704741 | 0.9692399 | 0.9706945 | 0.9684672 | 0.9729737 |
4.00E-06 | 0.9828866 | 0.9621534 | 0.968978 | 0.9689573 | 0.9693047 | 0.9698052 | 0.9703445 | 0.9716384 | 0.9751985 |
3.00E-06 | 0.984069 | 0.9664784 | 0.9743273 | 0.9665147 | 0.9666807 | 0.9707749 | 0.9702589 | 0.9715087 | 0.9719884 |
2.00E-06 | 0.9856118 | 0.9728311 | 0.9763679 | 0.9700645 | 0.9695018 | 0.9715554 | 0.9738139 | 0.9720455 | 0.9750922 |
1.00E-06 | 0.9874709 | 0.9776877 | 0.978227 | 0.9768061 | 0.9747966 | 0.9742936 | 0.9760905 | 0.9767568 | 0.9770784 |
实测表明不加卷积核的网络81*30*2的平均性能要好于加了卷积核的网络(1-8以内),卷积核数量为2的时候平均性能最优,n>4以后随着卷积核的数量的增加平均性能增加,平均性能曲线大致先增加,再减小,再增加
比较大小顺序81*30*2>2>9>8>1>7>6>5>4>3
也就是卷积核数量的增加对这个网络的平均性能没有任何正面价值。
比较最大性能
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
δ | 最大值p-max | 最大值p-max | 最大值p-max | 最大值p-max | 最大值p-max | 最大值p-max | 最大值p-max | 最大值p-max | 最大值p-max |
0.5 | 0.9071207 | 0.8240454 | 0.7641899 | 0.7745098 | 0.8095975 | 0.7961816 | 0.8219814 | 0.8188854 | 0.9086687 |
0.4 | 0.9453044 | 0.9669763 | 0.9700722 | 0.9726522 | 0.9705882 | 0.9705882 | 0.9695562 | 0.9721362 | 0.9649123 |
0.3 | 0.9545924 | 0.9654283 | 0.9690402 | 0.9736842 | 0.9674923 | 0.9685243 | 0.9674923 | 0.9700722 | 0.9654283 |
0.2 | 0.9509804 | 0.9643963 | 0.9690402 | 0.9649123 | 0.9638803 | 0.9680083 | 0.9711042 | 0.9674923 | 0.9649123 |
0.1 | 0.9422085 | 0.9721362 | 0.9680083 | 0.9669763 | 0.9731682 | 0.9561404 | 0.9664603 | 0.9680083 | 0.9664603 |
0.01 | 0.9752322 | 0.9747162 | 0.9721362 | 0.9659443 | 0.9711042 | 0.9690402 | 0.9674923 | 0.9685243 | 0.9654283 |
0.001 | 0.9871001 | 0.9742002 | 0.9747162 | 0.9762642 | 0.9716202 | 0.9726522 | 0.9731682 | 0.9762642 | 0.9783282 |
9.00E-04 | 0.9876161 | 0.9726522 | 0.9767802 | 0.9798762 | 0.9783282 | 0.9721362 | 0.9747162 | 0.9757482 | 0.9772962 |
8.00E-04 | 0.9876161 | 0.9747162 | 0.9757482 | 0.9772962 | 0.9752322 | 0.9752322 | 0.9736842 | 0.9752322 | 0.9757482 |
7.00E-04 | 0.9876161 | 0.9762642 | 0.9793602 | 0.9752322 | 0.9757482 | 0.9752322 | 0.9742002 | 0.9767802 | 0.9752322 |
6.00E-04 | 0.9881321 | 0.9762642 | 0.9778122 | 0.9767802 | 0.9778122 | 0.9736842 | 0.9752322 | 0.9767802 | 0.9778122 |
5.00E-04 | 0.9876161 | 0.9752322 | 0.9752322 | 0.9757482 | 0.9762642 | 0.9757482 | 0.9767802 | 0.9762642 | 0.9767802 |
4.00E-04 | 0.9881321 | 0.9772962 | 0.9736842 | 0.9736842 | 0.9788442 | 0.9747162 | 0.9747162 | 0.9783282 | 0.9767802 |
3.00E-04 | 0.9876161 | 0.9762642 | 0.9752322 | 0.9747162 | 0.9747162 | 0.9814241 | 0.9752322 | 0.9793602 | 0.9834881 |
2.00E-04 | 0.9855521 | 0.9798762 | 0.9747162 | 0.9757482 | 0.9814241 | 0.9829721 | 0.9850361 | 0.9845201 | 0.9860681 |
1.00E-04 | 0.9860681 | 0.9798762 | 0.9798762 | 0.9809082 | 0.9855521 | 0.9865841 | 0.9865841 | 0.9871001 | 0.9876161 |
9.00E-05 | 0.9860681 | 0.9788442 | 0.9814241 | 0.9840041 | 0.9855521 | 0.9865841 | 0.9876161 | 0.9876161 | 0.9871001 |
8.00E-05 | 0.9860681 | 0.9798762 | 0.9809082 | 0.9829721 | 0.9855521 | 0.9871001 | 0.9876161 | 0.9876161 | 0.9871001 |
7.00E-05 | 0.9860681 | 0.9819401 | 0.9834881 | 0.9840041 | 0.9871001 | 0.9865841 | 0.9871001 | 0.9871001 | 0.9871001 |
6.00E-05 | 0.9860681 | 0.9809082 | 0.9819401 | 0.9840041 | 0.9876161 | 0.9871001 | 0.9876161 | 0.9871001 | 0.9876161 |
5.00E-05 | 0.9860681 | 0.9824561 | 0.9829721 | 0.9860681 | 0.9865841 | 0.9881321 | 0.9881321 | 0.9876161 | 0.9881321 |
4.00E-05 | 0.9860681 | 0.9824561 | 0.9840041 | 0.9876161 | 0.9881321 | 0.9886481 | 0.9876161 | 0.9881321 | 0.9881321 |
3.00E-05 | 0.9860681 | 0.9819401 | 0.9865841 | 0.9871001 | 0.9881321 | 0.9881321 | 0.9876161 | 0.9876161 | 0.9876161 |
2.00E-05 | 0.9855521 | 0.9829721 | 0.9871001 | 0.9871001 | 0.9876161 | 0.9891641 | 0.9886481 | 0.9876161 | 0.9876161 |
1.00E-05 | 0.9871001 | 0.9865841 | 0.9891641 | 0.9881321 | 0.9886481 | 0.9881321 | 0.9886481 | 0.9881321 | 0.9881321 |
9.00E-06 | 0.9876161 | 0.9865841 | 0.9881321 | 0.9881321 | 0.9886481 | 0.9886481 | 0.9881321 | 0.9881321 | 0.9876161 |
8.00E-06 | 0.9871001 | 0.9871001 | 0.9891641 | 0.9886481 | 0.9886481 | 0.9891641 | 0.9886481 | 0.9881321 | 0.9881321 |
7.00E-06 | 0.9876161 | 0.9876161 | 0.9886481 | 0.9896801 | 0.9886481 | 0.9881321 | 0.9881321 | 0.9886481 | 0.9886481 |
6.00E-06 | 0.9876161 | 0.9865841 | 0.9891641 | 0.9891641 | 0.9891641 | 0.9886481 | 0.9886481 | 0.9881321 | 0.9881321 |
5.00E-06 | 0.9876161 | 0.9876161 | 0.9891641 | 0.9896801 | 0.9886481 | 0.9881321 | 0.9886481 | 0.9881321 | 0.9886481 |
4.00E-06 | 0.9876161 | 0.9891641 | 0.9891641 | 0.9891641 | 0.9886481 | 0.9881321 | 0.9886481 | 0.9881321 | 0.9891641 |
3.00E-06 | 0.9886481 | 0.9886481 | 0.9896801 | 0.9891641 | 0.9886481 | 0.9891641 | 0.9886481 | 0.9891641 | 0.9886481 |
2.00E-06 | 0.9896801 | 0.9886481 | 0.9896801 | 0.9891641 | 0.9896801 | 0.9891641 | 0.9896801 | 0.9891641 | 0.9891641 |
1.00E-06 | 0.9901961 | 0.9891641 | 0.9901961 | 0.9891641 | 0.9891641 | 0.9881321 | 0.9886481 | 0.9901961 | 0.9896801 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
观察当δ=1e-6时的最大性能曲线也可以看到一个随着卷积核的数量先增加在减小再增加的曲线。81*30*2的最大性能与2,7个卷积的网络是相同的,
比较大小顺序
81*30*2=2=7>8>1=3=4>6>5
加卷积核对这个网络的最大性能没有任何提升。
最后比较收敛时间
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
δ | 耗时 min/199 | 耗时 min/199 | 耗时 min/199 | 耗时 min/199 | 耗时 min/199 | 耗时 min/199 | 耗时 min/199 | 耗时 min/199 | 耗时 min/199 |
0.5 | 0.0594833 | 0.1027667 | 0.1791667 | 0.29335 | 0.4006833 | 0.4582167 | 0.5820667 | 0.6513 | 0.7267833 |
0.4 | 0.0688167 | 0.41515 | 0.5556667 | 0.74085 | 0.92655 | 1.0027833 | 1.2061667 | 1.2889833 | 1.3681833 |
0.3 | 0.0735 | 0.4524167 | 0.63485 | 0.8304667 | 1.0459167 | 1.0932833 | 1.3382 | 1.40825 | 1.5167833 |
0.2 | 0.0761167 | 0.4743333 | 0.6875167 | 0.9075333 | 1.1331667 | 1.1777333 | 1.4141833 | 1.5341167 | 1.6148833 |
0.1 | 0.08055 | 0.5015667 | 0.77695 | 0.9595167 | 1.2171833 | 1.2770833 | 1.6452 | 1.6549667 | 1.7564167 |
0.01 | 0.1003667 | 0.6139167 | 0.9535667 | 1.1939 | 1.4581333 | 1.56075 | 2.0986167 | 2.0537167 | 2.2004 |
0.001 | 0.1605667 | 0.75275 | 1.20525 | 1.5650167 | 2.0471 | 2.2436333 | 2.8341167 | 2.97565 | 3.25065 |
9.00E-04 | 0.15695 | 0.7572833 | 1.2236333 | 1.58225 | 2.1044167 | 2.2771167 | 2.9567333 | 3.07425 | 3.4253 |
8.00E-04 | 0.1608167 | 0.7789 | 1.2470833 | 1.5955833 | 2.1230667 | 2.3317333 | 2.9087167 | 3.2097833 | 3.5347167 |
7.00E-04 | 0.1657833 | 0.7934333 | 1.2719833 | 1.631 | 2.1694333 | 2.4120167 | 2.9677167 | 3.2728667 | 3.66385 |
6.00E-04 | 0.1697333 | 0.8130333 | 1.2714 | 1.68955 | -0.572617 | 2.4884667 | -0.701683 | 3.5267 | 3.9177167 |
5.00E-04 | 0.1767333 | 0.8515167 | 1.3381 | 1.7075333 | 2.2644833 | 2.5652 | 3.1778833 | 3.63125 | 4.11165 |
4.00E-04 | 0.1848167 | 0.8808 | 1.34375 | 1.8164667 | 2.39655 | 2.6835667 | 3.3839667 | 4.2241333 | 4.7730333 |
3.00E-04 | 0.2057 | 0.8989667 | 1.4334667 | 1.8969167 | 2.5072833 | 2.8873333 | 3.6362167 | 4.82035 | 5.3264167 |
2.00E-04 | 0.2372333 | 1.0038 | 1.5188 | 2.0594667 | 2.7646333 | 3.46175 | 5.24425 | 9.4351167 | 15.471217 |
1.00E-04 | 0.3082333 | 1.1541667 | 1.8969667 | 2.6597167 | 3.912 | 8.5081833 | 18.0385 | 36.29005 | 55.795917 |
9.00E-05 | 0.3294667 | 1.1660167 | 1.9362667 | 2.9314667 | 5.1728 | 10.6919 | 25.328483 | 41.195733 | 62.1303 |
8.00E-05 | 0.3506 | 1.1933833 | 2.0559 | 2.8837167 | 6.3216333 | 12.607617 | 30.615267 | 51.981083 | 69.67725 |
7.00E-05 | 0.39045 | 1.2453333 | 2.1631667 | 3.0356667 | 7.5124333 | 18.312117 | 34.16835 | 58.40215 | 77.737767 |
6.00E-05 | 0.41445 | 1.3131833 | 2.2123833 | 3.3429833 | 10.831017 | 23.456867 | 44.126533 | 64.850117 | 82.113017 |
5.00E-05 | 0.4533333 | 1.37165 | 2.4492 | 4.3357167 | 14.206083 | 31.636 | 54.42735 | 77.797417 | 95.811033 |
4.00E-05 | 0.507 | 1.447 | 2.71425 | 6.136 | 16.415617 | 38.293233 | 63.737833 | 88.9993 | 107.29325 |
3.00E-05 | 0.6197667 | 1.5405833 | 3.5367 | 7.7457167 | 30.983683 | 52.6039 | 73.260917 | 99.482233 | 119.26095 |
2.00E-05 | 0.7452667 | 1.903 | 7.0024833 | 17.802833 | 41.651883 | 61.47815 | 87.924333 | 112.97233 | 135.2249 |
1.00E-05 | 1.3909333 | 3.5972 | 11.67965 | 35.660583 | 59.160183 | 80.514817 | 106.55292 | 138.4477 | 162.41922 |
9.00E-06 | 1.5650667 | 3.8120667 | 15.851933 | 35.7808 | 61.68055 | 83.219283 | 114.26483 | 138.03458 | 165.40118 |
8.00E-06 | 1.7059833 | 4.4442167 | 18.6956 | 39.130267 | 63.832933 | 88.433933 | 115.81005 | 140.16613 | 171.9343 |
7.00E-06 | 1.9292 | 4.94315 | 18.987817 | 41.772417 | 64.9443 | 88.162567 | 118.66493 | 145.78023 | 177.7956 |
6.00E-06 | 2.1891167 | 5.3995167 | 18.9547 | 42.29215 | 68.522017 | 98.038633 | 120.93347 | 150.18782 | 181.02908 |
5.00E-06 | 2.4219333 | 6.3022667 | 24.781483 | 48.674917 | 72.252467 | 93.51065 | 125.40655 | 157.26028 | 185.7214 |
4.00E-06 | 2.7479667 | 8.4284833 | 27.185667 | 52.3063 | 76.41675 | 103.17003 | 135.91942 | 163.0033 | 198.2081 |
3.00E-06 | 3.0063167 | 9.8170167 | 31.028683 | 54.9185 | 79.566067 | 110.10823 | 141.78647 | 170.37593 | 205.73457 |
2.00E-06 | 3.4132167 | 13.364617 | 34.890433 | 63.395017 | 88.89515 | 122.34317 | 152.8279 | 182.82148 | 225.41838 |
1.00E-06 | 3.9796667 | 18.89445 | 43.154467 | 73.800733 | 100.83365 | 137.28115 | 169.53163 | 203.66297 | 245.47283 |
和 | 30.545133 | 101.42793 | 286.81893 | 559.0749 | 897.0972 | 1292.2911 | 1768.0181 | 2268.4723 | 2780.8371 |
当δ=1e-6的
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||
耗时 | t | 1.00E-06 | 3.979667 | 18.89445 | 43.15447 | 73.80073 | 100.83365 | 137.28115 | 169.5316333 | 203.663 | 245.4728 |
迭代次数 | n | 1.00E-06 | 66473.6 | 106216.2965 | 128344.7 | 143039.8 | 150997.402 | 158129.7236 | 165428.1658 | 171267 | 179712.6 |
t/n | 0.000177887 | 0.000336 | 0.000516 | 0.00066778 | 0.000868155 | 0.001024805 | 0.001189 | 0.001366 | |||
(ti+1/ni+1)/(ti/ni) | #DIV/0! | 1.890187 | 1.534461 | 1.29429211 | 1.300053975 | 1.180439939 | 1.160372 | 1.148647 | |||
(i+1)/i | 2 | 1.5 | 1.33333333 | 1.25 | 1.2 | 1.166667 | 1.142857 |
可以得到关系
单次迭代的耗时与卷积核数量成正比
由这个递推关系可得到表达式
得到表格
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
计算值 |
| 70.92307 | 100.284224 | 131.3565527 | 164.5439066 | 200.3785 | 239.4774 | |
实测值 | 13.36461667 | 34.89043 | 63.39502 | 88.89515 | 122.3431667 | 152.8279 | 182.8215 | 225.4184 |
误差 | 0.118748 | 0.12811806 | 0.073672983 | 0.076661438 | 0.096034 | 0.062368 |
时间随着卷积核数量的增加快速增加,排序
8>7>6>5>4>3>2>1>81*30*2
比较δ=1e-6的耗时,8个卷积核的网络要比81*30*2的网络慢了60倍,但无论最大性能还是平均性能并没有因为多花了60倍的时间而有任何提升。
综合上面的几个表格(8个卷积核以内)
- 卷积核的迭代次数与卷积核的平方根的比值成正比,卷积核越多迭代次数也越多
2. 比较平均性能和最大性能
平均性能:81*30*2>2>9>8>1>7>6>5>4>3
最大性能:81*30*2=2=7>8>1=3=4>6>5
从数据看加卷积核对这个网络的性能的提升几乎没有任何正面价值,因为无论加几个卷积核原始的81*30*2的平均性能和最大性能都是最好的。也侧面表明了卷积核的数量应该是有上限的。
在前面二分类0,1的实验中也出现了同样的现象,原始网络要优于加卷积核的网络。但是在二分类0,5的实验中加卷积核的网络要明显强于未加卷积核的网络,这几次实验做对比可以得出假设,卷积核加强了网络的局部分辨能力,但却同时弱化了网络的整体把握能力。
《到底应该加几个卷积核?》二分类0,1
3.比较耗时
比较δ=1e-6的耗时
81*30*2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
1 | 4.7477469 | 10.843739 | 18.544451 | 25.33721 | 34.49564 | 42.599456 | 51.175886 | 61.681757 |
卷积核越多耗时也越多。