5 最小生成树
构造连通网的最小代价生成树称为最小生成树,即Minimum Cost Spanning Tree,最小生成树通常是基于无向网/有向网构造的。
找连通网的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法。
5.1 普里姆(Prim)算法
普里姆算法,即Prim算法,大致实现过程如下:
(1) 新建数组adjVex[n],初始值均为0;新建数组lowCost[n],初始值均为infinity;
(2) 从第一个顶点X(下标为0)开始,把它与各顶点连接的权记录下来,放到lowCost数组里面,然后找到权最小的那个顶点Y,得到最小生成树的第一条边(X,Y),然后把lowCost数组里面Y对应的下标的元素设置为0;
(3) 然后处理顶点Y,把它与除X外的其他各顶点连接的权,与lowCost数组下标相同的权比较,将小的放入到lowCost里面,并把较小的权对应的顶点的下标记录在adjVex数组里面,也即,adjVex[j]要么是Y,要么是除X外的其他顶点;
(4) 找到lowCost数组中权最小的那个(显然不会是X,也不会是Y),得到最小生成树的第二条边(adjVex[j],j),然后把lowCost[j]设置为0;
(5) 然后按(3)、(4)的规则,处理第j个顶点,直到所有顶点都被连接起来(注意,最小连通树是针对连通网的);
下面我们会根据各种存储方式进行举例。
5.1.1 邻接矩阵的最小生成树
假设有以下无向网:
我们定义两个数组,一个X={},Y={V0、v1、v2、v3、v4、v5、v6、v7、v8},其中X表示已连通的顶点,Y表示未连通的顶点。
先从第一个顶点v0开始,把它加入X,表示已连通,这时,X={v0},Y={v1、v2、v3、v4、v5、v6、v7、v8}。
接下来,看X中的V0与其他顶点关联时权值情况,发现(v0,v1)的权值最小,因此认为,v0和v1是最小生成树的一个边,此时X={v0、v1},Y={v2、v3、v4、v5、v6、v7、v8}:
然后,再看X中的所有顶点与Y中的所有顶点的权值,发现边现(V0,v5)之间的权值最小,因此认为(V0,v5)是最小生成树的一条边,此时X={v0、v1、v5},Y={v2、v3、v4、v6、v7、v8}:
然后,再看X中的所有顶点与Y中的所有顶点的权值,发现边现(V1,v8)之间的权值最小,因此认为(V1,v8)是最小生成树的一条边,此时X={v0、v1、v5、v8},Y={v2、v3、v4、v6、v7}:
然后,再看X中的所有顶点与Y中的所有顶点的权值,发现边现(V8,v2)之间的权值最小,因此认为(V8,v2)是最小生成树的一条边,此时X={v0、v1、v5、v8、v2},Y={v3、v4、v6、v7}:
然后,再看X中的所有顶点与Y中的所有顶点的权值,发现边现(V1,v6)之间的权值最小,因此认为(V1,v6)是最小生成树的一条边,此时X={v0、v1、v5、v8、v2、v6},Y={v3、v4、v7}:
然后,再看X中的所有顶点与Y中的所有顶点的权值,发现边现(V6,v7)之间的权值最小,因此认为(V6,v7)是最小生成树的一条边,此时X={v0、v1、v5、v8、v2、v6、v7},Y={v3、v4}:
然后,再看X中的所有顶点与Y中的所有顶点的权值,发现边现(V7,v4)之间的权值最小,因此认为(V7,v4)是最小生成树的一条边,此时X={v0、v1、v5、v8、v2、v6、v7、v4},Y={v3}:
然后,再看X中的所有顶点与Y中的所有顶点的权值,发现边现(V7,v3)之间的权值最小,因此认为(V7,v3)是最小生成树的一条边,此时X={v0、v1、v5、v8、v2、v6、v7、v4、v3},Y={}:
这时,Y已处理完毕,所有顶点都连起来了,形成了最小生成树。
观察一下,我们在获取最小生成树的边时,第一步是从arc[0][j]取权最小的,取到了(v0,v1),第二步,是从arc[0][j]和arc[1][j]中取权值最小的,取到了(v0,v5),第三步,是从arc[0][j]、arc[1][j]和arc[5][j]中取权最小的,取到了(v1,v8),也即,规则是:
(1) 从arc[0][j]中取最小权对应的边(v0,v1),此时X={v0},把v1加入到X中;
(2) 从arc[0][j]、arc[1][j]中取最小权对应的边(v0,v5),此时X={v0,v1},把v5加入到X中;
(3) 从arc[0][j]、arc[1][j]、arc[5][j]中取最小权对应的边(v1,v8),此时X={v0,v1,v5},把v8加入到X中;
(4) 从arc[0][j]、arc[1][j]、arc[5][j]…arc[x][j]中取最小权对应的边(vi,vk),然后判断vi和vk是否在X中,不在则加入到X中;
当在arc[0][j]、arc[1][j]、arc[5][j]…arc[x][j]中取最小的权时,我们要比较x个一元数组的值,我们再做一下优化:
(1) 从arc[0][j]中取最小权对应的边(v0,v1),此时X={v0},把v1加入到X中;
(2) 从arc[0][j]、arc[1][j]中取最小权对应的边(v0,v5),此时X={v0,v1},把v5加入到X中,然后我们把arc[0][j]、arc[1][j]组合一下,取出arc[0][j]、arc[1][j]中较小的权放到lowCost[j]里面,同时使用一个数组adjVex[j]记录lowCost[j]对应的起始顶点下标,同时标注lowCost[0]、lowCost[1]的值为负无穷大,如下:
(3) 这时,只需要从lowCost[j]、arc[5][j]中取最小权对应的边就行了,不用再迭代arc[0][j]和arc[1][j];
因此,我们定义两个数组,lowCost[n]表示已处理过的顶点跟其他顶点之间的权值最小值列表,其中已处理过的顶点之间的权值设置为负无穷大,adjVex[n]表示最小权值对应的起始顶点,我们重新来看看上述无向网。
第一步,定义lowCost[n]和adjVex[n],adjVex[n]默认值为0,lowCost[n]默认值为负无穷大:
接下来处理第一个顶点,找到第一个顶点与其他顶点中权值最小的那条边(自身除外),具体做法是,令adjVex[n]的元素均为0,令lowCost[n]的元素值为arc[0][j],然后找到权值最小的arc[0][x],取边(adjVex[x],x),即(v0,v1):
接下来,要比较的应是arc[0][j]和arc[1][j]中,除arc[0][0]、arc[0][1]、arc[1][0]和arc[1][1]外的其他值,取最小值,因为我们要取的是“其他顶点与顶点v0、v1中权值最小的边”,因此我们把arc[1][j]与lowCost[n](这时,lowCost即为arc[0][j])比较,把较小的写入到lowCost中,同时把较小权对应对应的顶点下标写入到adjVex[n]中,如下:
如上可知,arc[1][2]小于lowCost[2],因此令lowCost[2]=arc[1][2]、adjVex[2]=1,arc[1][6]和arc[1][8]也相似处理。
然后,我们取出其中的最小权,得到下一条最小生成树的边,即(v0,v5):
接下来,是取得顶点v0、v1、v5与其他顶点的权中的最小值,生成下一条边,整体处理方式与上文类似:
后续操作也类似,直到所有顶点处理完毕,得到最小生成树。
让我们来看有向网的处理,按上述过程处理,得到以下结果:
即:
但注意观察,同样是连通B顶点,弧<B,A>实际上比<C,B>权小,所以最小生成树应该为:
因此,有向树的最小生成树生成过程中,不仅要看“顶点X指向的顶点中权最小的”,还要看“顶点X被指向的顶点中权最小的”。
因此,寻找最低代码的边/弧的逻辑应是“找到该顶点指向的即该顶点被指向的顶点中,代价最小的边或弧”,对于无向网当然这两个概念是一样的,但对于有向网,则要进行双向处理,因此上述有向网的处理逻辑有所不同。
以以上有向网为例,第一步,定义三个数组:lowCost与无向网相同,tailVex和headVex代替adjVex,分别表示箭头的尾巴和头(若为无向网则尾巴和头可以任意),初始化tailVex和headVex为0,lowCost为无穷大:
然后使用arc[0][j]和a