HDU 1242 BFS-Rescue

Description
Angel was caught by the MOLIGPY! He was put in prison by Moligpy. The prison is described as a N * M (N, M <= 200) matrix. There are WALLs, ROADs, and GUARDs in the prison.

Angel’s friends want to save Angel. Their task is: approach Angel. We assume that “approach Angel” is to get to the position where Angel stays. When there’s a guard in the grid, we must kill him (or her?) to move into the grid. We assume that we moving up, down, right, left takes us 1 unit time, and killing a guard takes 1 unit time, too. And we are strong enough to kill all the guards.

You have to calculate the minimal time to approach Angel. (We can move only UP, DOWN, LEFT and RIGHT, to the neighbor grid within bound, of course.)

Input
First line contains two integers stand for N and M.

Then N lines follows, every line has M characters. “.” stands for road, “a” stands for Angel, and “r” stands for each of Angel’s friend.

Process to the end of the file.

Output
For each test case, your program should output a single integer, standing for the minimal time needed. If such a number does no exist, you should output a line containing “Poor ANGEL has to stay in the prison all his life.”

题意:


从r出发,只能走前后左右四个方向,每次走一步,每走一步消耗一个单位的时间,如果遇到墙不能走,如果经过狱警花费两个单位的时间,求到a点的最小时间。


题解:


深度优先搜索问题,不过本题由于狱警处花费的时间和普通的道路上花费的时间不一样,所以用最小值优先的优先队列保存花费长度,这样子第一次搜索到a的时候就是最小时间。


#include <iostream>
#include <queue>
#include <vector>
#include <functional>
#include <string.h>
#include <stdio.h>
#define MAXN 200 + 10
using namespace std;

const int dx[] = {-1,0,1,0};
const int dy[] = {0,-1,0,1};

int m,n,min_num;
char grid[MAXN][MAXN];
int flag[40010];
struct cmp1{
    bool operator ()(int &a,int &b){
        return flag[a]>flag[b];//最小值优先
    }
};
priority_queue<int,vector<int>,cmp1>q;

void bfs(int i, int j)
{
    while(!q.empty())q.pop();
    q.push(i*m+j);
    while(!q.empty())
    {
        int u = q.top();
        q.pop();
        int cx = u / m;
        int cy = u % m;
        for(int k = 0; k < 4; k++)
        {
            int nx = cx + dx[k];
            int ny = cy + dy[k];
            if(nx >= 0 && nx < n && ny >= 0 && ny < m)
            {
                if(flag[nx*m+ny] == 0)
                {
                    if(grid[nx][ny] == '.')
                    {
                        flag[nx*m+ny] = flag[cx*m+cy] + 1;
                        q.push(nx*m+ny);
                    }
                    if(grid[nx][ny]== 'x')
                    {
                        flag[nx*m+ny] = flag[cx*m+cy] + 2;
                        q.push(nx*m+ny);
                    }
                    if(grid[nx][ny] == 'a')
                    {
                        if(flag[cx*m+cy]+1 < min_num)
                            min_num = flag[cx*m+cy]+1;
                        return;
                    }
                }
            }
        }
    }
}

int main()
{
    while(cin >> n >> m)
    {
        min_num = 100000;
        for(int i = 0; i < n; i++)
            for(int j = 0; j < m; j++)
                cin >> grid[i][j];
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < m; j++)
            {
                if(grid[i][j] == 'r')
                {
                    //cout << i << j << endl;
                    memset(flag, 0, sizeof(flag));
                    bfs(i,j);
                }
            }
        }
        if(min_num == 100000)
            cout << "Poor ANGEL has to stay in the prison all his life." << endl;
        else
            cout << min_num << endl;
    }
    return 0;
}
【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值