经典排序算法——堆排序

对于一个int数组,请编写一个堆排序算法,对数组元素排序。

给定一个int数组A及数组的大小n,请返回排序后的数组。

测试样例:
[1,2,3,5,2,3],6

[1,2,2,3,3,5]


class HeapSort {
public:
	int* heapSort(int* A, int n) {
        
		BuildMaxHeap(A, n);//首先将数组A构建成大顶堆
        
		for (int i = n - 1; i >= 1; i--)
		{
            swap(A[0],A[i]);//将堆顶最大值与未排序的最后一个数交换
			MaxHeapFix(A, 0, i-1);//将A[0,i-1]重新调整为大顶堆
		}
		return A;
	}
    
    //构建大顶堆
	void BuildMaxHeap(int *A, int n)
	{
		for (int i = n / 2 - 1; i >= 0; i--)
			MaxHeapFix(A, i, n-1);
	}
    
    //重新调整为大顶堆
	void MaxHeapFix(int *A, int i, int n)
	{
		int key = A[i];
		for(int j=2*i;j<n;j*=2)
		{
			if (j<n && A[j]<A[j+1])//找出左右子树中较大
				++j;
			if (key>=A[j])//根节点key与左右子树中较大值比较,若key较大,则直接跳出本次循环;若key较小,则进行交换
				break;
			A[i] = A[j];
			i=j;
		}
		A[i] = key;
	}
};


### 堆排序算法详解 堆排序是一种基于比较的高效排序算法,其核心思想是利用堆这种数据结构来完成排序操作。堆可以被看作是一棵完全二叉树,并且满足堆积性质:对于最大堆而言,任意节点的关键字都不小于其子节点的关键字;而对于最小堆,则相反。 #### 一、基本概念 堆排序分为两种主要形式——最大堆和最小堆。在最大堆中,父节点始终大于等于其子节点[^4]。因此,在一个数组表示的最大堆中,第一个元素总是当前集合中的最大值。同样地,在最小堆中,父节点始终小于等于其子节点。 #### 二、主要过程 堆排序的过程主要包括以下几个方面: 1. **建堆** 将输入的数据构建成一个初始堆(通常是从最后一个非叶子节点向上逐层调整)。这一阶段的目标是使整个数据集符合堆定义的要求。 2. **堆调整** 当移除堆顶元素后,需要重新调整剩下的部分以保持堆特性不变。这一步骤称为“下沉”,即将新的根节点与其较大的孩子交换位置直到恢复堆属性为止[^3]。 #### 三、特点分析 - 时间复杂度稳定为 O(n log n),无论最好情况还是最坏情况下都适用; - 是一种原地排序方法,不需要额外存储空间; - 不稳定性:由于可能涉及多次覆盖写入操作,所以它不是稳定的排序方式[^2]。 #### 四、C代码实现示例 以下是使用 C 编程语言编写的简单版本的堆排序程序: ```c #include <stdio.h> // 调整堆函数 void heapify(int arr[], int n, int i){ int largest = i; // 初始化最大为根节点 int l = 2*i + 1; // 左子节点 int r = 2*i + 2; // 右子节点 if (l < n && arr[l] > arr[largest]) largest = l; if (r < n && arr[r] > arr[largest]) largest = r; if(largest !=i ){ swap(&arr[i], &arr[largest]); heapify(arr,n,largest); } } // 主要堆排序逻辑 void heapsort(int arr[],int n){ for(int i=n/2 -1;i>=0;i--){ heapify(arr,n,i); } for(int i= n-1 ;i>0;i--){ swap(&arr[0],&arr[i]); heapify(arr,i,0); } } ``` 上述代码展示了如何通过递归调用来维护堆结构并最终完成排序任务[^1]。 --- ### Java 实现示例 如果考虑另一种主流编程语言如 Java 的话,也可以按照相似思路编写如下所示的堆排序类: ```java public class HeapSort { public void sort(int[] array) { int length = array.length; // 构造初始堆 for (int i = length / 2 - 1; i >= 0; i--) { adjustHeap(array, i, length); } // 进行n-1次循环处理 for (int j = length - 1; j > 0; j--) { // 把当前最大的放到最后面去 swap(array, 0, j); // 对前面j-1个数再次进行堆化 adjustHeap(array, 0, j); } } private static void adjustHeap(int[] array,int index ,int size){ int temp=array[index]; for(int k=index*2+1;k<size;k=k*2+1){ if(k+1<size&&array[k]<array[k+1]){ k++; } if(temp>=array[k])break; array[index]=array[k]; index=k; } array[index]=temp; } private static void swap(int[] data, int a, int b){ int tmp=data[a]; data[a]=data[b]; data[b]=tmp; } } ``` 这段代码实现了完整的堆排序流程,包括初始化堆以及后续每次删除后的重排工作。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值