摄像机模型与标定——单应性

本文介绍了计算机视觉中单应性的概念,解释了单应性矩阵的数学表示,并阐述了OpenCV如何利用多个视场计算单应性矩阵以求解摄像机内参数。通过cvFindHomography()函数展示了单应性矩阵的计算过程,讨论了不同方法处理异常值的策略,包括RANSAC和LMEDS。文章还提及了如何在实际应用中选择合适的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在计算机视觉中,平面的单应性被定义为一个平面到另外一个平面的投影映射。因此一个二维平面上的点映射到摄像机成像仪上的映射就是平面单应性的例子。如果点Q到成像仪上的点q的映射使用齐次坐标,这种映射可以用矩阵相乘的方式表示。若有一下定义:


这里引入参数s,它是任意尺度的比例(目的是使得单应性定义到该尺度比例)。通常根据习惯放在H的外面。
H有两部分组成:用于定位观察的物体平面的物理变换和使用摄像机内参数矩阵的投影。


物理变换部分是与观测到的图像平面相关的部分旋转R和部分平移t的影响之和,表示如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值