A family hierarchy(层次) is usually presented by a pedigree tree. Your job is to count those family members who have no child.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 0<N<100, the number of nodes in a tree, and M (<N), the number of non-leaf nodes. Then M lines follow, each in the format:
ID K ID[1] ID[2] … ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 01.
The input ends with N being 0. That case must NOT be processed.
Output Specification:
For each test case, you are supposed to count those family members who have no child for every seniority(同等的)level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.
The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output 0 1 in a line.
Sample Input:
2 1
01 1 02
Sample Output:
0 1
题目大意
- 一个测试用例
- 第一行两个参数,第一个参数n是节点的数量,第二个参数m是非叶子节点的数量
- 然后紧跟着m行,每行第一个参数是非叶子节点的id,第二个参数是该非叶子节点的孩子数量,紧接着就是孩子节点的id
- 要求输出每层非叶子节点的数量
思路
很明显,涉及到家庭成员份之情况是一个树操作。根据要求输出每层的非叶子节点,只要用到深搜(DFS)。
程序设计:首先使用Vector保存树的结构,然后使用dfs算法对其进行深搜。使用dfs需要注意的就是边界值,即什么时候应该退出递归,做一些小修改就完成了
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
const int MAX_N = 100;
vector<int> children[MAX_N]; //使用vector保存树的结构
int maxFloor = 1; //maxfloor这个变量很重要,此变量记录了整棵树的最大深度。
//按照逻辑,树的深度是多少,最后就要输出多少个数字。
int leafEveryFloor[MAX_N]; //储存深度为i的非叶子节点的数量,这里从1开始。
void dfs(int p, int floor){
// 更新树的最大层次
maxFloor = max(floor, maxFloor); //更新maxfloor,取最大。
const long l = children[p].size(); //某个节点的储存孩子的数组大小为0,即它本身就是叶节
//点
if(l == 0){
leafEveryFloor[floor]++;
return;
}
//这里floor++ 是为了下面的循环中不需要floor+1, 减少重复计算
floor++;
for(int i = 0; i < l; i++){
dfs(children[p][i], floor);
}
}
int main() {
// 读取输入
int n, m, id, k, child;
scanf("%d %d", &n, &m);
while (m-- > 0) {
scanf("%d %d", &id, &k);
while (k-- > 0) {
scanf("%d", &child);
children[id].push_back(child);
}
}
// 1号为根节点,默认第一根节点的深度是1
dfs(1, 1);
// 输出结果
printf("%d", leafEveryFloor[1]);
for(int i = 2; i <= maxFloor; i++){
printf(" %d", leafEveryFloor[i]);
}
return 0;
}
本文介绍了一种算法,用于解决家庭树结构中各层级非叶子节点(无子女的家庭成员)的计数问题。通过深度优先搜索(DFS)遍历树结构,算法能够准确计算出每个层级的非叶子节点数量,适用于理解家族关系和树形数据结构。
1657

被折叠的 条评论
为什么被折叠?



