14、3D 点云生成与编码:从算法到实践

3D 点云生成与编码:从算法到实践

在当今的科技领域,3D 技术的发展日新月异,3D 点云作为描述物体表面信息的重要数据形式,在多个领域发挥着关键作用。本文将深入探讨 3D 点云的生成与编码技术,介绍相关的实验、模型以及它们的性能表现。

1. 实验设置

在进行 3D 点云的自动编码和生成实验时,研究人员选用了 ShapeNet 数据集中的飞机、椅子和汽车类别。对于多模态形状补全任务,则采用了 Genre 的 ShapeNet 渲染数据。

为了公平比较不同方法的性能,使用了多种评估指标:
- 对称 Chamfer 距离(CD) 地球移动距离(EMD) :用于评估重建点云的质量。
- 最小匹配距离(MMD) 覆盖分数(COV) 1 - NN 分类器准确率(1 - NNA) :用于评估无条件生成点云的质量。
- 总互差(TMD) 最小匹配距离(MMD) :用于评估条件生成任务中的多模态形状补全性能。

在测量这些指标之前,会将每个点云归一化到单位球体。

2. 形状自动编码

研究人员将自己的模型与当前最先进的点云自动编码器进行了定量比较,包括 AtlasNet 变体、PointFlow(PF)、ShapeGF 和 DPM 等。结果显示,在 EMD 指标上,该方法始终优于其他方法。这表明重建的点云在表面上的点分布更加均匀,

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样统计,通过模拟系统元件的故障修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值