蓝桥杯 ADV-165 超级玛丽

探讨了在存在陷阱的路径上,超级玛丽如何通过不同的跳跃策略抵达终点的问题。使用递归算法,避免陷阱,计算所有可能的跳跃路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  算法提高 超级玛丽  

时间限制:1.0s   内存限制:256.0MB

    

问题描述

  大家都知道"超级玛丽"是一个很善于跳跃的探险家,他的拿手好戏是跳跃,但它一次只能向前跳一步或两步。有一次,他要经过一条长为n的羊肠小道,小道中有m个陷阱,这些陷阱都位于整数位置,分别是a1,a2,....am,陷入其中则必死无疑。显然,如果有两个挨着的陷阱,则玛丽是无论如何也跳过不去的。
  现在给出小道的长度n,陷阱的个数及位置。求出玛丽从位置1开始,有多少种跳跃方法能到达胜利的彼岸(到达位置n)。

输入格式

  第一行为两个整数n,m
  第二行为m个整数,表示陷阱的位置

输出格式

  一个整数。表示玛丽跳到n的方案数

样例输入

4 1
2

样例输出

1

数据规模和约定

  40>=n>=3,m>=1
  n>m;
  陷阱不会位于1及n上

分析:递归。将陷阱位置标记,递归时避开陷阱即可。需要注意陷阱位置不一定在1~n之间,所以标记数组要开大一点或用set或map存。

代码:

#include<iostream>
#include<vector>
using namespace std;
int ans = 0;
int n, m;
vector<int> v;
void f(int step) {
	if (step == n) {
		ans++;
		return;
	}
	if (step + 1 <= n && !v[step + 1]) {
		f(step + 1);
	}
	if (step + 2 <= n && !v[step + 2]) {
		f(step + 2);
	}
}
int main() {
	cin >> n >> m;
	v.resize(n * 10);
	for (int i = 0; i < m; i++) {
		int temp;
		cin >> temp;
		v[temp] = 1;
	}
	f(1);
	cout << ans << endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值