大家好,我是付威,一名奋斗在代码第一线十余年的程序员。在2019年我初次接触到领域驱动设计(Domain-Driven Design,简称DDD)的概念。在我的探索中,我发现许多有关DDD的教程过于偏重于战略设计,充斥着许多晦涩难懂的概念,导致阅读起来相当艰难。有些教程往往只是解释了DDD的概念,而未深入探讨为何要采用这种方式以及这样做能带来哪些好处,这导致很多人在实践应用DDD时遇到了诸多难题。甚至有些人为了引入DDD而在项目中强制采用DDD架构,结果却意外增加了代码的复杂性,带来了一系列潜在的风险。
为了解决这一问题,我计划从代码的基础入手,详细讲解如何将DDD的理念应用于实际开发中,以便解答为何DDD能使我们的代码更加整洁的问题。今天,我们将着重讨论如何运用DDD的思想来组织我们的代码,从而实现"高内聚、低耦合"的开发目标。
首先,让我们看一个电商系统中下单功能的代码示例:
@Autowired
ProductDao productDao;
@Autowired
UserDao userDao;
public void createOrder(String productId,String userId,int count){
Product product = productDao.queryById(productId);
UserInfo user=userDao.queryByUserId(userId);
//风控检测
RiskResponse riskRes= riskClient.queryRisk(xxx);
if(riskRes!=null&&riskRes.getCode()==0&&riskRes.getRiskCode().equal("0001")){
//命中风控
throw new BizException("下单失败,请检查网络")
}
Order order=new Order();
order.setOrderId(IdUtils.generateId());
order.setPrice(product.getPrice()*count);
order.setAddress(user.getAddress());
order.setStatus(OrderEnum.OrderSucess);
orderDao.insert(order);
//预热缓存和增加记录
redisService.set("Order:OrderID_"+order.getOrderId(),order);
orderLogDao.addLog(order);
MessageEntity message = new MessageEntity();
message.setOrderId(order.getOrderId());
message.setMessage("下单成功");
kafkaSender.sent(messageEntity);
}
代码分析
首先,我们对这段代码的逻辑进行整理,共涉及5个步骤:
- 查询商品和用户信息
- 下单行为的风控检测
- 订单创建和持久化
- 写入缓存和记录下单日志
- 发送订单下单成功消息,通知其他系统
我们从这几个过程入手,根据业务的重要性,我们可以将它们划分为核心业务和非核心业务。显然,下单及其相关操作属于核心代码(步骤1、2、3)。与此相比,写日志、写入缓存以及发送Kafka消息则属于下单过程的非核心业务
核心代码分析
1. 【查询商品和用户信息】
productDao
和 userDao
这两个类是用于封装数据库的增删改查(CRUD)操作。然而,这种封装方式的问题在于,它们的方法实现与具体的数据存储介质密切相关,导致我们的业务逻辑对数据存储方式有着强烈的依赖。
举个例子来说明:当前情况下,我们的数据存储介质是MySQL数据库,因此 userDao
和 productDao
类中的方法都是基于SQL语句的封装。然而,如果以后需要更换不同的数据访问框架,或者将数据存储从MySQL迁移到Elasticsearch(ES),我们就必须修改 userDao
和 productDao
类的实现,以适应新的数据存储方式。这样的操作不仅会对核心业务代码产生影响,还会在项目的各个角落引发不确定性,从而导致每一次的代码优化都需要小心谨慎地进行。
这种紧密耦合的情况,除了增加了代码维护的难度,还可能引发系统的脆弱性。一旦需要改动存储