[paddleocr]表格分类模块使用教程

表格分类模块使用教程

一、概述

表格分类模块是计算机视觉系统中的关键组成部分,负责对输入的表格图像进行分类,该模块的性能直接影响到整个表格识别过程的准确性和效率。表格分类模块通常会接收表格图像作为输入,然后通过深度学习算法,根据图像的特性和内容,将其分类到预定义的类别中,例如有线表和无线表。表格分类模块的分类结果将作为输出,供表格识别相关产线使用。

二、支持模型列表

模型模型下载链接Top1 Acc(%)GPU推理耗时(ms)
[常规模式 / 高性能模式]
CPU推理耗时(ms)
[常规模式 / 高性能模式]
模型存储大小 (M)
PP-LCNet_x1_0_table_cls推理模型/训练模型94.22.35 / 0.474.03 / 1.356.6M

测试环境说明:

  • 性能测试环境
    • 测试数据集:自建的内部评测数据集。
    • 硬件配置:
      • GPU:NVIDIA Tesla T4
      • CPU:Intel Xeon Gold 6271C @ 2.60GHz
      • 其他环境:Ubuntu 20.04 / cuDNN 8.6 / TensorRT 8.5.2.2
  • 推理模式说明
模式GPU配置CPU配置加速技术组合
常规模式FP32精度 / 无TRT加速FP32精度 / 8线程PaddleInference
高性能模式选择先验精度类型和加速策略的最优组合FP32精度 / 8线程选择先验最优后端(Paddle/OpenVINO/TRT等)

三、快速开始

❗ 在快速开始前,请先安装 PaddleOCR 的 wheel 包,详细请参考 安装教程

使用一行命令即可快速体验:

paddleocr table_classification -i https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/table_recognition.jpg

您也可以将表格分类的模块中的模型推理集成到您的项目中。运行以下代码前,请您下载示例图片到本地。

from paddleocr import TableClassification
model = TableClassification(model_name="PP-LCNet_x1_0_table_cls")
output = model.predict("table_recognition.jpg", batch_size=1)
for res in output:
    res.print(json_format=False)
    res.save_to_json("./output/res.json")

运行后,得到的结果为:

{'res': {'input_path': 'table_recognition.jpg', 'page_index': None, 'class_ids': array([0, 1], dtype=int32), 'scores': array([0.84421, 0.15579], dtype=float32), 'label_names': ['wired_table', 'wireless_table']}}

运行结果参数含义如下: - input_path:表示输入图片的路径 - page_index:如果输入是PDF文件,则表示当前是PDF的第几页,否则为 None - class_ids:表示预测结果的类别id - scores:表示预测结果的置信度 - label_names:表示预测结果的类别名

可视化图像如下:

相关方法、参数等说明如下:

  • TableClassification实例化表格分类模型(此处以PP-LCNet_x1_0_table_cls为例),具体说明如下:
参数参数说明参数类型可选项默认值
model_name模型名称str
model_dir模型存储路径str
device模型推理设备str支持指定GPU具体卡号,如“gpu:0”,其他硬件具体卡号,如“npu:0”,CPU如“cpu”。gpu:0
use_hpip是否启用高性能推理插件boolFalse
hpi_config高性能推理配置dict | NoneNone
  • 其中,model_name 必须指定,在此基础上,指定 model_dir 时,使用用户自定义的模型。

  • 调用表格分类模型的 predict() 方法进行推理预测,该方法会返回一个结果列表。另外,本模块还提供了 predict_iter() 方法。两者在参数接受和结果返回方面是完全一致的,区别在于 predict_iter() 返回的是一个 generator,能够逐步处理和获取预测结果,适合处理大型数据集或希望节省内存的场景。可以根据实际需求选择使用这两种方法中的任意一种。predict() 方法参数有 input 和 batch_size,具体说明如下:

参数参数说明参数类型可选项默认值
input待预测数据,支持多种输入类型Python Var/str/list
  • Python变量,如numpy.ndarray表示的图像数据
  • 文件路径,如图像文件的本地路径:/root/data/img.jpg
  • URL链接,如图像文件的网络URL:示例
  • 本地目录,该目录下需包含待预测数据文件,如本地路径:/root/data/
  • 列表,列表元素需为上述类型数据,如[numpy.ndarray, numpy.ndarray]["/root/data/img1.jpg", "/root/data/img2.jpg"]["/root/data1", "/root/data2"]
batch_size批大小int任意整数1
  • 对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为图片、保存为json文件的操作:
方法方法说明参数参数类型参数说明默认值
print()打印结果到终端format_jsonbool是否对输出内容进行使用 JSON 缩进格式化True
indentint指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效4
ensure_asciibool控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_jsonTrue时有效False
save_to_json()将结果保存为json格式的文件save_pathstr保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致
indentint指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效4
ensure_asciibool控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_jsonTrue时有效False
  • 此外,也支持通过属性获取带结果的可视化图像和预测结果,具体如下:
属性属性说明
json获取预测的json格式的结果
img获取可视化图像

四、二次开发

由于 PaddleOCR 并不直接提供表格分类模块的训练,因此,如果需要训练表格分类模型,可以参考 PaddleX 表格分类模块二次开发部分进行训练。训练后的模型可以无缝集成到 PaddleOCR 的 API 中进行推理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值