Art of Multiprocessor Programming 答案 ch16

本文探讨了复杂算法的时间复杂度分析,如递归算法的大O表示法,并通过具体的Java并发编程案例展示了如何利用多线程提高计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

185.

M1(n) = 2M1(n/2) + O(n)

==> M1(n) = O(nlogn)

M∞(n) = M∞(n/2) + O(n)

==> M∞(n) = O(n)

P = M∞(n) / M1(n) = logn


186.


187.

package p187;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class ArraySum 
{
	static ExecutorService Execs = Executors.newCachedThreadPool();
	
	static int Add(int[] data) throws ExecutionException, InterruptedException
	{
		Result rc = new Result(0);
		Future future = Execs.submit(new AddClass(data, 0, data.length - 1, rc));
		future.get();
		
		return rc.get();
	}
	
	static class Result
	{
		private int val;
		
		public Result(int val)
		{
			this.val = val;
		}
		
		public int get()
		{
			return this.val;
		}
		
		public void set(int val)
		{
			this.val = val;
		}
	}
	
	static class AddClass implements Runnable
	{
		int[] data;
		Result rc;
		int lIndex;
		int rIndex;
		
		
		public AddClass(int[] data, int lIndex, int rIndex, Result rc)
		{
			this.data = data;
			this.rc = rc;
			this.lIndex = lIndex;
			this.rIndex = rIndex;
		}
		
		public void run()
		{
			try
			{
				if(rIndex < lIndex)
				{
					rc.set(0);
				}else if(lIndex == rIndex)
				{
					rc.set(data[lIndex]);
				}else
				{
					Result leftRc = new Result(0);
					Result rightRc = new Result(0);
					int mid = (lIndex + rIndex) / 2;
					
					Future lf = Execs.submit(new AddClass(data, lIndex, mid, leftRc));
					Future rf = Execs.submit(new AddClass(data, mid + 1, rIndex, rightRc));
					
					lf.get();
					rf.get();
					
					rc.set(leftRc.get() + rightRc.get());
				}
				
			}catch(Exception e)
			{
				e.printStackTrace();
			}
			
		}
	}

}

188.

T1 <= T4 * 4 = 320; T1 <= T64 * 64 = 320; ==> T1 <= 320;

T∞ <= T4 = 80; T∞ <= T64 = 10; ==> T∞ <= 10;

而且都满足第三个不等式。

T10 <= T1 / 10 + (T∞ * 9) / 10 = 41。


189.

package p189;

public class Matrix
{
	private T[][] vcs;
	private final int sRow;
	private final int eRow;
	private final int sCol;
	private final int eCol;
	private final int rLen;
	private final int cLen;
	
	@SuppressWarnings("unchecked")
	public Matrix(int rowLen, int colLen)
	{
		this.vcs = (T[][]) new Object[rowLen][];
		for(int i = 0; i < rowLen; i ++)
		{
			vcs[i] = (T[]) new Object[colLen];
		}
		
		sRow = 0;
		eRow = rowLen - 1;
		sCol = 0;
		eCol = colLen - 1;
		rLen = rowLen;
		cLen = colLen;
	}
	
	public Matrix(T[][] vcs, int sRow, int eRow, int sCol, int eCol)
	{
		this.vcs = vcs;
		this.sRow = sRow;
		this.eRow = eRow;
		this.sCol = sCol;
		this.eCol = eCol;
		this.rLen = eRow - sRow + 1;
		this.cLen = eCol - sCol + 1;
	}
	
	public void set(int row, int col, T val) throws Exception
	{
		if((sRow + row) > eRow) throw new Exception("Invalid row ");
		if((sCol + col) > eCol) throw new Exception("Invalid col");
		vcs[sRow + row][sCol + col] = val;
	}
	
	public T get(int row, int col) throws Exception
	{
		if((sRow + row) > eRow) throw new Exception("Invalid row ");
		if((sCol + col) > eCol) throw new Exception("Invalid col");
		return vcs[sRow + row][sCol + col];
	}
	
	public int getRowLength()
	{
		return rLen;
	}
	
	public int getColLength()
	{
		return cLen;
	}
	
	@SuppressWarnings("unchecked")
	public Matrix[][] split()
	{
		int mRow = (sRow + eRow) /2;
		int mCol = (sCol + eCol) / 2;
		
		Matrix[][] rcs = (Matrix[][]) new Matrix[2][];
		
		for(int i = 0; i < rcs.length; i ++)
		{
			rcs[i] = (Matrix[]) new Matrix[2];
		}
		
		rcs[0][0] = new Matrix(vcs, sRow, mRow, sCol, mCol);
		
		if(sCol == eCol)
		{
			rcs[0][1] = new Matrix(vcs, 0, -1, 0, -1);
			rcs[1][1] = new Matrix(vcs, 0, -1, 0, -1);
		}else
		{
			rcs[0][1] = new Matrix(vcs, sRow, mRow, mCol + 1, eCol);
		}
		
		if(sRow == eRow)
		{
			rcs[1][0] = new Matrix(vcs, 0, -1, 0, -1);
			rcs[1][1] = new Matrix(vcs, 0, -1, 0, -1);
		}else
		{
			rcs[1][0] = new Matrix(vcs, mRow + 1, eRow, sCol, mCol);
			rcs[1][1] = new Matrix(vcs, mRow + 1, eRow, mCol + 1, eCol);
		}
		return rcs;
	}
	
	
	public String toString()
	{
		if(rLen <= 0 || cLen <= 0)
		{
			return "Empty";
		}
		
		StringBuilder str = new StringBuilder();
		
		for(int i = sRow; i <= eRow; i ++)
		{
			for(int j = sCol; j <= eCol; j ++)
			{
				str.append(vcs[i][j]);
				str.append(", ");
			}
			str.append("\n");
		}
		
		return str.toString();
	}
	
	public static void main(String[] args)
	{
		Integer[][] data = new Integer[8][];
		for(int i = 0; i < data.length; i ++)
		{
			data[i] = new Integer[8];
		}
		
		for(int i = 0; i < data.length; i ++)
		{
			for(int j = 0; j < data[i].length; j ++)
			{
				data[i][j] = i * 10 + j;
			}
		}
		
		Matrix m = new Matrix(data, 0, data.length - 1, 0, data[0].length - 1);
		
		while(m.getRowLength() > 0)
		{
			System.out.println(m);
			
			Matrix[][] subMs = m.split();
			
			for(int i = 0; i < subMs.length; i ++)
			{
				for(int j = 0; j < subMs[i].length; j ++)
				{
					System.out.println(subMs[i][j]);
				}
			}
			
			m = subMs[1][1];
		}
	}
}


190. 

package p190;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

public class PolyOp 
{
	static ExecutorService Execs = Executors.newCachedThreadPool();
	
	static Long Op(int x, Polynomial leftPrefix, Polynomial rightPrefix, OP op) throws ExecutionException, InterruptedException
	{
		long xs[] = new long[leftPrefix.getDegree() * 2];
		long sum = 1;
		for(int i = 0; i < xs.length; i ++)
		{
			xs[i] = sum;
			sum *= x;
		}
		
		Result rc = new Result((long)0);
		Future f = Execs.submit(new OpClass(leftPrefix, rightPrefix, xs, rc, op));
		f.get();
		
		return rc.get();
	}
	
	static class Result
	{
		private T val;
		
		public Result(T val)
		{
			this.val = val;
		}
		public T get()
		{
			return this.val;
		}
		public void set(T val)
		{
			this.val = val;
		}
	}
	
	static enum OP 
	{
		ADD,
		MUL,
	};
	
	static class OpClass implements Runnable
	{
		private Polynomial leftPrefix;
		private Polynomial rightPrefix;
		private final long x[];
		private Result rc;
		private final OP op;
		
		public OpClass(Polynomial leftPrefix, Polynomial rightPrefix, long x[], Result rc, OP op)
		{
			this.leftPrefix = leftPrefix;
			this.rightPrefix = rightPrefix;
			this.x = x;
			this.rc = rc;
			this.op = op;
		}
		
		private void add()
		{
			try
			{
				if(leftPrefix.getDegree() == 1)
				{
					rc.set(new Long(leftPrefix.get(0) + rightPrefix.get(0)));
				}else
				{
					Result fRc = new Result((long)0);
					Result lRc = new Result((long)0);
					
					Polynomial[] leftPs = leftPrefix.split();
					Polynomial[] rightPs = rightPrefix.split();
					
					Future ff = Execs.submit(new OpClass(leftPs[0], rightPs[0], x, fRc, op));
					Future lf = Execs.submit(new OpClass(leftPs[1], rightPs[1], x, lRc, op));
					
					ff.get();
					lf.get();
					
					long result = fRc.get() + lRc.get() * x[leftPs[0].getDegree()];
					rc.set(result);
				}
			}catch(Exception e)
			{
				e.printStackTrace();
			}		
		}
		
		private void mul()
		{
			try
			{
				if(leftPrefix.getDegree() == 1)
				{
					rc.set(new Long(leftPrefix.get(0) * rightPrefix.get(0)));
				}else
				{
					Result fRc = new Result((long)0);
					Result lRc = new Result((long)0);
					Result mRc1 = new Result((long)0);
					Result mRc2 = new Result((long)0);
										
					Polynomial[] leftPs = leftPrefix.split();
					Polynomial[] rightPs = rightPrefix.split();
					
					Future ff = Execs.submit(new OpClass(leftPs[0], rightPs[0], x, fRc, op));
					Future fm1 = Execs.submit(new OpClass(leftPs[0], rightPs[1], x, mRc1, op));
					Future fm2 = Execs.submit(new OpClass(leftPs[1], rightPs[0], x, mRc2, op));
					Future fr = Execs.submit(new OpClass(leftPs[1], rightPs[1], x, lRc, op));
					
					ff.get();
					fr.get();
					fm1.get();
					fm2.get();
					
					long result = fRc.get() + (lRc.get() * x[leftPrefix.getDegree()]) + (mRc1.get() + mRc2.get()) * x[leftPs[0].getDegree()];
					rc.set(result);
				}
				
			}catch(Exception e)
			{
				e.printStackTrace();
			}				
		}
		
		public void run()
		{
			switch(op)
			{
			case ADD:
				add();
				break;
			case MUL:
				mul();
				break;
			default:
				System.out.println("Invalid op");
				break;
			}
		}
	}
	
	public static void main(String[] args)
	{
		int degree = 4;
		Polynomial left = new Polynomial(degree);
		Polynomial right = new Polynomial(degree);
		
		for(int i = 0; i < left.getDegree(); i ++)
		{
			left.set(i, 1);
			right.set(i, 1);
		}
		
		try
		{
			long rc = PolyOp.Op(2, left, right, PolyOp.OP.MUL);
			System.out.println("Get  " + rc);
		}catch(Exception e)
		{
			e.printStackTrace();
		}
	}
}

191.

矩阵2分,8个线程做乘法。然后n^2个线程做加法。

==> M∞(n)  = M∞(n/2)  + O(1) ==> M∞(n) = O(logn)

==> M1(n) = 8 * M(n/2) + O(n^2) ==> M1(n) = O(n^3)

package p191;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

import p189.Matrix;

public class MatrixMul 
{
	static ExecutorService Execs = Executors.newCachedThreadPool();
	
	public static void MUL(Matrix a, Matrix b, Matrix c)  throws ExecutionException, InterruptedException
	{
		Future f = Execs.submit(new MultiClass(a, b, c));
		f.get();
		return;
	}

	static class MultiClass implements Runnable
	{
		private Matrix a;
		private Matrix b;
		private Matrix c;
		
		public MultiClass(Matrix a, Matrix b, Matrix c)
		{
			this.a = a;
			this.b = b;
			this.c = c;
		}
		
		public void run()
		{
			if(a.getRowLength() == 0 || a.getColLength() == 0)
			{
				return;
			}
			
			if(a.getRowLength() == 1 && a.getColLength() == 1)
			{
				try 
				{
					c.set(0, 0, a.get(0, 0) * b.get(0, 0));
				} catch (Exception e) 
				{
					// TODO Auto-generated catch block
					e.printStackTrace();
				}
				
				return;
			}
			
			if(a.getColLength() > 1 || a.getRowLength() > 1)
			{
				try
				{
					Matrix as[][] = a.split();
					Matrix bs[][] = b.split();
				
					Future[] fs = new Future[8];
					Matrix tcs0 = new Matrix(as[0][0].getRowLength(), bs[0][0].getColLength());
					Matrix tcs1 = new Matrix(as[0][0].getRowLength(), bs[0][1].getColLength());
					Matrix tcs2 = new Matrix(as[1][0].getRowLength(), bs[0][0].getColLength());
					Matrix tcs3 = new Matrix(as[1][0].getRowLength(), bs[0][1].getColLength());
					Matrix tcs4 = new Matrix(as[0][1].getRowLength(), bs[1][0].getColLength());
					Matrix tcs5 = new Matrix(as[0][1].getRowLength(), bs[1][1].getColLength());
					Matrix tcs6 = new Matrix(as[1][1].getRowLength(), bs[1][0].getColLength());
					Matrix tcs7 = new Matrix(as[1][1].getRowLength(), bs[1][1].getColLength());
					
				
					fs[0] = Execs.submit(new MultiClass(as[0][0], bs[0][0], tcs0));
					fs[1] = Execs.submit(new MultiClass(as[0][0], bs[0][1], tcs1));
					fs[2] = Execs.submit(new MultiClass(as[1][0], bs[0][0], tcs2));
					fs[3] = Execs.submit(new MultiClass(as[1][0], bs[0][1], tcs3));
					fs[4] = Execs.submit(new MultiClass(as[0][1], bs[1][0], tcs4));
					fs[5] = Execs.submit(new MultiClass(as[0][1], bs[1][1], tcs5));
					fs[6] = Execs.submit(new MultiClass(as[1][1], bs[1][0], tcs6));
					fs[7] = Execs.submit(new MultiClass(as[1][1], bs[1][1], tcs7));
					
					for(int i = 0; i < fs.length; i ++)
					{
						fs[i].get();
					}
					
					Future[][] rcFs = new Future[c.getRowLength()][];
					for(int i = 0; i < rcFs.length; i ++)
					{
						rcFs[i] = new Future[c.getColLength()];
					}
					
					for(int i = 0; i < tcs0.getRowLength(); i ++)
					{
						for(int j = 0; j < tcs0.getColLength(); j ++)
						{
							rcFs[i][j] = Execs.submit(new MatrixAddClass(tcs0, tcs4, c, i, j, i, j));
						}
					}
					for(int i = 0; i < tcs1.getRowLength(); i ++)
					{
						for(int j = 0; j < tcs1.getColLength(); j ++)
						{
							rcFs[i][j + tcs0.getColLength()] = Execs.submit(new MatrixAddClass(tcs1, tcs5, c, i, j, i, j + tcs0.getColLength()));
						}
					}		
					for(int i = 0; i < tcs2.getRowLength(); i ++)
					{
						for(int j = 0; j < tcs2.getColLength(); j ++)
						{
							rcFs[i + tcs0.getRowLength()][j] = Execs.submit(new MatrixAddClass(tcs2, tcs6, c, i, j, i + tcs0.getRowLength(), j));
						}
					}
					for(int i = 0; i < tcs3.getRowLength(); i ++)
					{
						for(int j = 0; j < tcs3.getColLength(); j ++)
						{
							rcFs[i + tcs0.getRowLength()][j + tcs0.getColLength()] = 
									Execs.submit(new MatrixAddClass(tcs3, tcs7, c, i, j, i + tcs0.getRowLength(), j + tcs0.getColLength()));
						}
					}
					
					for(int i = 0; i < rcFs.length; i ++)
					{
						for(int j = 0; j < rcFs[i].length; j ++)
						{
							rcFs[i][j].get();
						}
					}
					
					
				}catch(Exception e)
				{
					e.printStackTrace();
				}

				
			}
		}
	}
	
	static class MatrixAddClass implements Runnable
	{
		private Matrix a;
		private Matrix b;
		private Matrix c;
		private int srcRow;
		private int dstRow;
		private int srcCol;
		private int dstCol;
		
		public MatrixAddClass(Matrix a, Matrix b, Matrix c, int srcRow, int srcCol, int dstRow, int dstCol)
		{
			this.a = a;
			this.b = b;
			this.c = c;
			this.srcRow = srcRow;
			this.dstRow = dstRow;
			this.srcCol = srcCol;
			this.dstCol = dstCol;
		}
		
		public void run()
		{
			Integer val = 0;
			
			try
			{
				val = a.get(srcRow, srcCol) + b.get(srcRow, srcCol);
			}catch(Exception e)
			{
				e.printStackTrace();
				val = 0;
			}
			
			try
			{
				c.set(dstRow, dstCol, val);
			}catch(Exception ie)
			{
				ie.printStackTrace();
			}
		}
	}
	
}


192.

因为size是不断变化的。有可能T1上锁时qa.size() < qb.size(); T2上锁时qa.size() > qb.size()。以交叉的顺序取锁可能造成死锁。

193.

1. 如果不是volatile, 因为popTop是用top和bottom的index判断队列空,所以将会有错误的判断。比如说

T1.popBottom() --> T1.(bottom = 0)  --> T1.CAS(top) ==> top = 0 && pop task[0];

T2.popTop() --> T2读到没有同步的bottom = 1  && oldTop = 0 ==> bottom > oldTop ==> T2.CAS(top) --> T2.pop task[0]

将破坏mutual

2. 可以尽早使popTop()得到bottom <= oldTop。 图中23行应该是最早的安全位置。因为bottom由popBottom控制,最早使bottom = 0也要在取得相关值并且满足条件之后,即最早在23行。在此之后,popTop和popBottom都统一的由CAS(top)取到可线性化性。之后不论是谁在此尝试都得知bottom = 0,即队列为空。如果没有现成操作pop,push将会使队列溢出。


194.

1. 因为如果先CAS然后取值,在这2个操作中间,task[oldTop]可能会被popBottom()和pushBottom()覆盖。

2.可以。因为isEmpty将获取最新的值,如果isEmpty() == TRUE,那么确实队列为空。如果isEmpty() == FALSE,则在这段时间中,top和bottom的值可能有变化。但是没有关系,可以看成在不用isEmpty()的算法中取值和CAS中间的时间的变化。


195.

pushBottom(): 

bottom = oldBottom + 1。 如果bottom没有被改变,pop都不能看到这个task。

popTop():

if(size <= 0) return null 或者  top.CAS

popBottom():

line20 or line 22 or line 27


196.

public Runnable popTop()
{
    while(true)
    {
        int[] stamp = new int[1];
        int oldTop = top.get(stamp);
        int newTop = oldTop + 1;
        int oldStamp = stamp[0];
        int newStamp = oldStamp + 1;
        
        if(bottom <= oldTop)
        {
            return null;
        }
        
        Runnable r = task[oldTop];
        if(top.compareAndSet(oldTop, newTop, oldStamp, newStamp))
        {
            return r;
        }
    }
    
    //impossible
    return null;
}

197.

不能。因为pop方法内部都有同样功能的判断,而且读到的是比isEmpty读到的更新的值,并且2这实现上的开销基本相同。如果isEmpty与pop当中的非空判断得到同样的结果,则用户代码中没有调用这个方法也没有关系;如果结果不相同,则调用isEmpty是浪费时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值