关于deep feature、Tandem feature、bottleneck feature...

博客主要解析了BN、deep feature与DBN-DNN的概念。指出BN特征属于深度特征,deep feature还可包括d - vector等,适用于语音和说话人识别;DNN训练类似DBN过程,加softmax输出会成DBN - DNN;还提及BN层概念出处及特征拼接概念出处。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总是把这三个弄混...

今天算是明白这三个不是一个概念...

标黑的是每个特征的特性。

*************************************************

BN特征是属于深度特征,这一点无可非议。不过deep feature应该除了bottle neck之外还可以包括d-vector等等,这个概念在Google的2014年ICASSP《DEEP NEURAL NETWORKS FOR SMALL FOOTPRINT TEXT-DEPENDENT SPEAKER VERIFICATION》上有提到。

 

这些深度特征也都可以适用在语音识别、说话人识别。这样认为BN等同deep feature也算是可以的。而DNN训练确实是pre-training加一个fine-tune,而这个过程可以视为DBN的过程,当在最后一层隐含层后再加一层softmax输出,就会成为DBN-DNN。这个过程在Hinton 的论文里有详细的分析《Deep Neural Networks for Acoustic Modeling in Speech Recognition》。而BN通常都是在倒数第二层提取

 

bottleneck应该最早源于1994年的《CONNECTIONIST SPEECH RECOGNITION A Hybrid Approach》,里面首先提出到BN层应该要同时比inputoutput结点数都要少的概念,而把多种特征拼接起来Tandem的概念可以在2000的ICASSP《TANDEM CONNECTIONIST FEATURE EXTRACTION FOR CONVENTIONAL HMM SYSTEMS》里找到。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值