几乎所有的编程语言都会提供排序函数,比如C语言中qsort(),C++ STL中的sort()、stable_sort(),还有Java语言中的Collections.sort()。在平时的开发中,我们也都是直接使用这些现成的函数来实现业务逻辑中的排序功能。那你知道这些排序函数是如何实现的吗?底层都利用了哪种排序算法呢?
基于这些问题,今天我们就来看排序这部分的最后一块内容:如何实现一个通用的、高性能的排序函数?
如何选择合适的排序算法?
如果要实现一个通用的、高效率的排序函数,我们应该选择哪种排序算法?我们先回顾一下前面讲过的几种排序算法。

我们前面讲过,线性排序算法的时间复杂度比较低,适用场景比较特殊。所以如果要写一个通用的排序函数,不能选择线性排序算法。
如果对小规模数据进行排序,可以选择时间复杂度是O(n2)的算法;如果对大规模数据进行排序,时间复杂度是O(nlogn)的算法更加高效。所以,为了兼顾任意规模数据的排序,一般都会首选时间复杂度是O(nlogn)的排序算法来实现排序函数。
时间复杂度是O(nlogn)的排序算法不止一个,我们已经讲过的有归并排序、快速排序,后面讲堆的时候我们还会讲到堆排序。堆排序和快速排序都有比较多的应用,比如Java语言采用堆排序实现排序函数,C语言使用快速排序实现排序函数。
不知道你有没有发现,使用归并排序的情况其实并不多。我们知道,快排在最坏情况下的时间复杂度是O(n2),而归并排序可以做到平均情况、最坏情况下的时间复杂度都是O(nlogn),从这点上看起来很诱人,那为什么它还是没能得到“宠信”呢?
还记得我们上一节讲的归并排序的空间复杂度吗?归并排序并不是原地排序算法,空间复杂度是O(n)。所以,粗略点、夸张点讲,如果要排序100MB的数据,除了数据本
通用排序函数实践:快速排序与优化策略

本文探讨如何实现高性能的通用排序函数,主要关注快速排序的优化,包括三数取中法和随机法选择分区点。此外,文章通过分析C语言的qsort()函数,展示了其在小数据量时使用归并排序,大数据量时切换到快速排序,并在快速排序中采用插入排序优化小规模数据的策略。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



