这里会继续讲四个复杂度分析方面的知识点,最好情况时间复杂度(best case time complexity)、最坏情况时间复杂度(worst case time complexity)、平均情况时间复杂度(average case time complexity)、均摊时间复杂度(amortized time complexity)。如果这几个概念你都能掌握,那对你来说,复杂度分析这部分内容就没什么大问题了。
最好、最坏情况时间复杂度
上一节我举的分析复杂度的例子都很简单,今天我们来看一个稍微复杂的。你可以用我上节教你的分析技巧,自己先试着分析一下这段代码的时间复杂度。
// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) pos = i;
}
return pos;
}
你应该可以看出来,这段代码要实现的功能是,在一个无序的数组(array)中,查找变量x出现的位置。如果没有找到,就返回-1。按照上节课讲的分析方法,这段代码的复杂度是O(n),其中,n代表数组的长度。
我们在数组中查找一个数据,并不需要每次都把整个数组都遍历一遍,因为有可能中途找到就可以提前结束循环了。但是,这段代码写得不够高效。我们可以这样优化一下这段查找代码。
// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {

本文详细讲解了复杂度分析中的最好情况、最坏情况、平均情况和均摊时间复杂度,通过实例分析了在不同情况下代码的时间复杂度,探讨了平均时间复杂度的计算及其与概率的关系,并引入了均摊时间复杂度的概念,以及如何通过摊还分析来理解和应用均摊时间复杂度。
最低0.47元/天 解锁文章
1074

被折叠的 条评论
为什么被折叠?



