HDU 4848 Wow! Such Conquering! (搜索+floyd)

此问题是关于一名征服者如何在限定时间内访问多个星球并完成巡视任务的算法挑战。目标是最小化总访问时间,并确保不违反每个星球的时间限制。采用Floyd算法进行最短路径预处理,通过深度优先搜索确定最优访问顺序。

                                 Wow! Such Conquering!

Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2549    Accepted Submission(s): 768


 

Problem Description

There are n Doge Planets in the Doge Space. The conqueror of Doge Space is Super Doge, who is going to inspect his Doge Army on all Doge Planets. The inspection starts from Doge Planet 1 where DOS (Doge Olympic Statue) was built. It takes Super Doge exactly Txy time to travel from Doge Planet x to Doge Planet y.
With the ambition of conquering other spaces, he would like to visit all Doge Planets as soon as possible. More specifically, he would like to visit the Doge Planet x at the time no later than Deadlinex. He also wants the sum of all arrival time of each Doge Planet to be as small as possible. You can assume it takes so little time to inspect his Doge Army that we can ignore it.

 

 

Input

There are multiple test cases. Please process till EOF.
Each test case contains several lines. The first line of each test case contains one integer: n, as mentioned above, the number of Doge Planets. Then follow n lines, each contains n integers, where the y-th integer in the x-th line is Txy . Then follows a single line containing n - 1 integers: Deadline2 to Deadlinen.
All numbers are guaranteed to be non-negative integers smaller than or equal to one million. n is guaranteed to be no less than 3 and no more than 30.

 

 

Output

If some Deadlines can not be fulfilled, please output “-1” (which means the Super Doge will say “WOW! So Slow! Such delay! Much Anger! . . . ” , but you do not need to output it), else output the minimum sum of all arrival time to each Doge Planet.

 

 

Sample Input

4
0 3 8 6
4 0 7 4
7 5 0 2
6 9 3 0
30 8 30
4
0 2 3 3
2 0 3 3
2 3 0 3
2 3 3 0
2 3 3

 

Sample Output

36 

-1

Hint

Explanation: In case #1: The Super Doge travels to Doge Planet 2 at the time of 8 and to Doge Planet 3 at the time of 12, then to Doge Planet 4 at the time of 16. The minimum sum of all arrival time is 36.

 

 

Source

2014西安全国邀请赛

 

 

Recommend

liuyiding

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<string>
#include<map>
#include<queue>
#include<vector>
#include<stack>
#define ll long long
#define maxn 1e7
#define CL(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define rep(i,s,e) for(int i=s;i<=e;i++)
const int P=1e9+7;
using namespace std;
int dis[50][50],dead[50],ans,n,vis[50];
inline int rd()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
void floyd()
{
	rep(k,1,n)
	  rep(i,1,n)
	    rep(j,1,n)
	      dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
void dfs(int u,int t,int cnt,int tmp)
{
	if(tmp>ans) return;
	if(cnt==n)
	{
		ans=tmp;
		return;
	}
	rep(i,2,n)
	  if(!vis[i]&&t+dis[u][i]>dead[i]) return;
	rep(i,2,n)
	  if(!vis[i]&&dead[i]>=t+dis[u][i])
	  {
	  	vis[i]=1;
	  	dfs(i,t+dis[u][i],cnt+1,tmp+dis[u][i]*(n-cnt));
        vis[i]=0; 	  
	  }
} 
int main()
{
	while(scanf("%d",&n)!=EOF)
	{
		rep(i,1,n)
		   rep(j,1,n)
		      scanf("%d",&dis[i][j]);
		floyd();
		rep(i,2,n) scanf("%d",&dead[i]);
		ans=INF;CL(vis,0);vis[1]=1;
		dfs(1,0,1,0);
		if(ans==INF) printf("-1\n");
		else printf("%d\n",ans); 
	}
}

 

当前,全球经济格局深刻调整,数字化浪潮席卷各行各业,智能物流作为现代物流发展的必然趋势和关键支撑,正迎来前所未有的发展机遇。以人工智能、物联网、大数据、云计算、区块链等前沿信息技术的快速迭代与深度融合为驱动,智能物流不再是传统物流的简单技术叠加,而是正在经历一场从自动化向智能化、从被动响应向主动预测、从信息孤岛向全面互联的深刻变革。展望2025年,智能物流系统将不再局限于提升效率、降低成本的基本目标,而是要构建一个感知更全面、决策更精准、执行更高效、协同更顺畅的智慧运行体系。这要求我们必须超越传统思维定式,以系统化、前瞻性的视角,全面规划和实施智能物流系统的建设。本实施方案正是基于对行业发展趋势的深刻洞察和对未来需求的精准把握而制定。我们的核心目标在于:通过构建一个集成了先进感知技术、大数据分析引擎、智能决策算法和高效协同平台的综合智能物流系统,实现物流全链路的可视化、透明化和智能化管理。这不仅是技术层面的革新,更是管理模式和服务能力的全面提升。本方案旨在明确系统建设的战略方向、关键任务、技术路径和实施步骤,确保通过系统化部署,有效应对日益复杂的供应链环境,提升整体物流韧性,优化资源配置效率,降低运营成本,并最终为客户创造更卓越的价值体验。我们致力于通过本方案的实施,引领智能物流迈向更高水平,为构建现代化经济体系、推动高质量发展提供强有力的物流保障。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值