You're given a tree with nn vertices.
Your task is to determine the maximum possible number of edges that can be removed in such a way that all the remaining connected components will have even size.
The first line contains an integer nn (1≤n≤1051≤n≤105) denoting the size of the tree.
The next n−1n−1 lines contain two integers uu, vv (1≤u,v≤n1≤u,v≤n) each, describing the vertices connected by the ii-th edge.
It's guaranteed that the given edges form a tree.
Output a single integer kk — the maximum number of edges that can be removed to leave all connected components with even size, or −1−1if it is impossible to remove edges in order to satisfy this property.
4 2 4 4 1 3 1
1
3 1 2 1 3
-1
10 7 1 8 4 8 10 4 7 6 5 9 3 3 5 2 10 2 5
4
2 1 2
0
In the first example you can remove the edge between vertices 11 and 44. The graph after that will have two connected components with two vertices in each.
In the second example you can't remove edges in such a way that all components have even number of vertices, so the answer is −1−1
.
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,l=0,L=0,x,y,ans=0;
int a[301000],link[301000],first[301000],ne[301000],father[301000],f[301000],p[301000];
void add(int x,int y)
{
a[++l]=x;link[l]=y;ne[l]=first[x];first[x]=l;
}
int build(int x,int fa)
{
for(int i=first[x];i!=-1;i=ne[i])
{
if(link[i]==fa) continue;
int c=build(link[i],x);
if(c%2==1) f[x]+=c;
else ans++;
}
return f[x]+1;
}
int main()
{
scanf("%d",&n);memset(first,-1,sizeof(first));
for(int i=1;i<=n-1;i++)
{
scanf("%d %d",&x,&y);
add(x,y);add(y,x);
}
if(n%2==1) {printf("-1");return 0;}
build(1,-1);
//for(int i=1;i<=n;i++) printf("%d\n",f[i]);
printf("%d",ans);
}

本文介绍了一个关于树形结构的算法问题Cut'emall!,任务是在给定的树中找到能够移除的最大边数,使得剩下的连通组件节点数量均为偶数。文章通过输入输出示例展示了算法的应用场景,并提供了完整的C++实现代码。

被折叠的 条评论
为什么被折叠?



