行列式公式及其余子式
Formula for det A (n! iterms)
大公式(BIG FORMULA)
d e t A = s u m ± a 1 α + a 2 β + a 3 γ + . . . a n ω detA = sum\pm a_{1\alpha }+a_{2\beta }+a_{3\gamma }+...a_{n\omega } detA=sum±a1α+a2β+a3γ+...anω
n! terms
α , β , γ , . . . ω \alpha, \beta,\gamma,...\omega α,β,γ,...ω = 排列(Permutation of (1,2,3,…n))
代数余子式(Cofactor formula)
3 × 3 3\times 3 3×3
d e t = a 11 ( a 22 a 33 − a 23 a 32 ) det = a_{11}(a_{22}a_{33}-a_{23}a_{32}) det=a11(a22a33−a23a32) + a 12 ( ) +a_{12}(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ) +a12( ) + a 13 ( ) +a_{13}(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ) +a13( )
括号里的余子式(in parens)
特征值和特征向量
(Eigenvalues —Eigenvectors)
d e t [ A − λ I ] = 0 det [A-\lambda I]= 0 det[A−λI]=0
TRACE = λ 1 + λ 2 + . . . λ n \lambda_1+ \lambda_2+... \lambda_n λ1+λ2+...λn
Ax parallel to x
Those are eigenvectors
大等式(BIG EQUATION)
A x = λ x Ax =\lambda x Ax=λx
λ \lambda λ: 为所乘系数(multiplying factor), 特征值
x: 为特征向量
对角化和A的幂
(Diagonaliging a matrix S − 1 A S = λ S^{-1}AS=\lambda S−1AS=λ)
Powers of A equation u k + 1 = A u k u_{k+1}=A_{u_k} uk+1=Auk
马尔科夫矩阵
(Markov matrices)
Ex:
A
=
[
0.1
0.01
0.3
0.2
0.99
0.3
0.7
0
0.4
]
A=\begin{bmatrix} 0.1 & 0.01 & 0.3\\ 0.2& 0.99 &0.3 \\ 0.7& 0& 0.4 \end{bmatrix}
A=⎣⎡0.10.20.70.010.9900.30.30.4⎦⎤
原则:
- 所有元素 ≥ \geq ≥ 0 (All entires ≥ \geq ≥ 0)
- 每一列加起来都为1(all columns add to 1)
方法:
- λ = 1 \lambda=1 λ=1 is an eigenvalue
- All other
λ
i
<
1
\lambda_i<1
λi<1
u k = A k u 0 = c 1 λ 1 k x 1 + c 2 λ 2 k x 2 u_k=A^ku_0=c_1\lambda_1^kx_1+c_2\lambda_2^kx_2 uk=Aku0=c1λ1kx1+c2λ2kx2