题目:http://poj.org/problem?id=3294
题意:给你n给字符串,求在一半以上的串里重复出现的最长子串
分析:将所有字符串合成一个串,字符串自己用不同的字符标记间隔,然后构造新字符串的后缀数组,很容易发现,相同子串一定在后缀数组里相邻,只要判断一个区间里的子串里是否包括了超过一半的不同串,我们只要二分子串的长度,就能得到一些区间,height数组大小都大于等于该长度,这些区间如果有超过一半的不同串,说明有解,就保存当前的解即可。。。
好吧,这个思路不是我想的,我的思路是找到所有包括不同串个数大于一半的区间,然后这个区间的最长公共前缀是否超过答案
代码:
/** head files*/
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
using namespace std;
/** some operate*/
#define PB push_back
#define MP make_pair
#define REP(i,n) for(i=0;i<(n);++i)
#define UPTO(i,l,h) for(i=(l);i<=(h);++i)
#define DOWN(i,h,l) for(i=(h);i>=(l);--i)
#define MSET(arr,val) memset(arr,val,sizeof(arr))
#define MAX3(a,b,c) max(a,max(b,c))
#define MAX4(a,b,c,d) max(max(a,b),max(c,d))
#define MIN3(a,b,c) min(a,min(b,c))
#define MIN4(a,b,c,d) min(min(a,b),min(c,d))
/** some const*/
#define N 222222
#define M 222222
#define PI acos(-1.0)
#define oo 1111111111
/** some alias*/
typedef long long ll;
/** Global variables*/
/** some template names, just push ctrl+j to get it in*/
//manacher 求最长回文子串
//pqueue 优先队列
//combk n元素序列的第m小的组合和
//pmatrix n个点的最大子矩阵
//suffixarray 后缀数组
template <typename T, int LEN>
struct suffixarray
{
int str[LEN*3],sa[LEN*3];
int rank[LEN],height[LEN];
int id[LEN];
int len;
bool equal(int *str, int a, int b)
{
return str[a]==str[b]&&str[a+1]==str[b+1]&&str[a+2]==str[b+2];
}
bool cmp3(int *str, int *nstr, int a, int b)
{
if(str[a]!=str[b])return str[a]<str[b];
if(str[a+1]!=str[b+1])return str[a+1]<str[b+1];
return nstr[a+b%3]<nstr[b+b%3];
}
void radixsort(int *str, int *sa, int *res, int n, int m)
{
int i;
REP(i,m)id[i]=0;
REP(i,n)++id[str[sa[i]]];
REP(i,m)id[i+1]+=id[i];
DOWN(i,n-1,0)res[--id[str[sa[i]]]]=sa[i];
}
void dc3(int *str, int *sa, int n, int m)
{
#define F(x) ((x)/3+((x)%3==1?0:one))
#define G(x) ((x)<one?(x)*3+1:((x)-one)*3+2)
int *nstr=str+n, *nsa=sa+n, *tmpa=rank, *tmpb=height;
int i,j,k,len=0,num=0,zero=0,one=(n+1)/3;
REP(i,n)if(i%3)tmpa[len++]=i;
str[n]=str[n+1]=0;
radixsort(str+2, tmpa, tmpb, len, m);
radixsort(str+1, tmpb, tmpa, len, m);
radixsort(str+0, tmpa, tmpb, len, m);
nstr[F(tmpb[0])]=num++;
UPTO(i,1,len-1)
nstr[F(tmpb[i])]=equal(str,tmpb[i-1],tmpb[i])?num-1:num++;
if(num<len)dc3(nstr,nsa,len,num);
else REP(i,len)nsa[nstr[i]]=i;
if(n%3==1)tmpa[zero++]=n-1;
REP(i,len)if(nsa[i]<one)tmpa[zero++]=nsa[i]*3;
radixsort(str, tmpa, tmpb, zero, m);
REP(i,len)tmpa[nsa[i]=G(nsa[i])]=i;
i=j=0;
REP(k,n)
if(j>=len||(i<zero&&cmp3(str,tmpa,tmpb[i],nsa[j])))sa[k]=tmpb[i++];
else sa[k]=nsa[j++];
}
void initSA(T *s, int n,int m)
{
int i,j,k=0;
str[len=n]=0;
REP(i,n)str[i]=s[i];
dc3(str,sa,n+1,m);
REP(i,n)sa[i]=sa[i+1];
REP(i,n)rank[sa[i]]=i;
REP(i,n)
{
if(k)--k;
if(rank[i])for(j=sa[rank[i]-1];str[i+k]==str[j+k];++k);
else k=0;
height[rank[i]]=k;
}
}
};
suffixarray<int , N> msa;
int s[N];
char tmp[1111];
int out[1111];
int dd[N],vis[111];
int r,ans;
bool ok(int mid, int lit)
{
int i=0,j,num,flag=1;
while(i<msa.len)
{
while(i<msa.len&&msa.height[i]<mid)++i;
j=i-1;
MSET(vis,0);
num=0;
if(!vis[dd[msa.sa[j++]]]++)++num;
while(j<msa.len&&msa.height[j]>=mid)
if(!vis[dd[msa.sa[j++]]]++)++num;
if(num>lit)
{
ans=mid;
if(flag)r=flag=0;
out[r++]=msa.sa[i];
}
i=j;
}
return !flag;
}
int main()
{
int i,j,k,n,m,cs=0;
while(scanf("%d",&n),n!=0)
{
if(cs++)puts("");
m=0;
UPTO(i,1,n)
{
scanf("%s",tmp);
k=strlen(tmp);
REP(j,k)
{
s[m+j]=tmp[j]+111;
dd[m+j]=i;
}
dd[m+k]=0;
s[m+k]=i;
m=m+k+(i<n);
}
if(n<2)
{
puts(tmp);
continue;
}
msa.initSA(s,m,356);
ans=i=0,j=1111;
while(i<=j)
{
m=(i+j)>>1;
if(ok(m,n/2))i=m+1;
else j=m-1;
}
if(ans)
{
REP(i,r)
{
REP(j,ans)printf("%c",s[out[i]+j]-111);
puts("");
}
}
else puts("?");
}
return 0;
}