usaco 5.2 Wisconsin Squares(DFS)

这是一篇关于USACO问题"Wisconsin Squares"的解析,主要内容涉及如何在遵循特定规则(同一类型牛群不能相邻)的情况下,通过DFS算法将年幼牛群转移到新牧场。文章提供了输入输出格式、样例输入输出,并包含一个未经优化的DFS解决方案,该方案在处理样例数据时表现出0.7秒的运行时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Wisconsin Squares

It's spring in Wisconsin and time to move the yearling calves to the yearling pasture and last year's yearlings to the greener pastures of the north 40.

Farmer John has five kinds of cows on his farm (abbreviations are shown in parentheses): Guernseys (A), Jerseys (B), Herefords (C), Black Angus (D), and Longhorns (E). These herds are arranged on the 16 acre pasture, one acre for each small herd, on a 4 x 4 grid (labeled with rows and columns) like this:

              1 2 3 4
             +-------
            1|A B A C
            2|D C D E
            3|B E B C
            4|C A D E

In the initial pasture layout, the herds total 3 A's, 3 B's, 4 C's, 3 D's, and 3 E's. This year's calves have one more D herd and one fewer C herd, for a total of 3 A's, 3 B's, 3 C's, 4 D's, and 3 E's.

FJ is extremely careful in his placement of herds onto his pasture grid. This is because when herds of the same types of cows are too close together, they misbehave: they gather near the fence and smoke cigarettes and drink milk. Herds are too close together when they are on the same square or in any of the eight adjacent squares.

Farmer John must move his old herd out of the field and his new herd into the field using his old brown Ford pickup truck, which holds one small herd at a time. He picks up a new herd, drives to a square in the yearling pasture, unloads the new herd, loads up the old herd, and drives the old herd to the north 40 where he unloads it. He repeats this operation 16 times and then drives to Zack's for low-fat yogurt treats and familiar wall decor.

Help Farmer John. He must choose just exactly the correct order to replace the herds so that he never puts a new herd in a square currently occupied by the same type of herd or adjacent to a square occupied by the same type of herd. Of course, once the old cows are gone and the new cows are in place, he must be careful in the future to separate herds based on the new arrangement.

Very important hint: Farmer John knows from past experience that he must move a herd of D cows first.

Find a way for Farmer John to move the yearlings to their new pasture. Print the 16 sequential herd-type/row/column movements that lead to a safe moving experience for the cows.

Calculate the total number of possible final arrangements for the 4x4 pasture and calculate the total number of ways those arrangements can be created.

PROGRAM NAME: wissqu

TIME LIMIT: 5 seconds

INPUT FORMAT

Four lines, each with four letters that denote herds.

SAMPLE INPUT (file wissqu.in)

ABAC
DCDE
BEBC
CADE

OUTPUT FORMAT

16 lines, each with a herd-type, row and column. If there are multiple solutions (and there are), you should output the solution for which the concatenated string ("D41C42A31 ... D34") of the answers is first in lexicographic order.

One more line with the total number of ways these arrangements can be created.

SAMPLE OUTPUT (file wissqu.out)

D 4 1
C 4 2
A 3 1
A 3 3
B 2 4
B 3 2
B 4 4
E 2 1
E 2 3
D 1 4
D 2 2
C 1 1
C 1 3
A 1 2
E 4 3
D 3 4
14925

题意:给你一个4*4的矩阵,里面放了一些字母A~E,现在有新的不同数量的字母要替换旧的,总数也是16,有一个规则就是任何时候相同字母都不能相邻,包括被替换的字母

分析:随手写了DFS,没有任何优化,没想到居然可以过,不过这题就一组数据,也就是样例,0.7s  应该算还行吧。。。

代码:

/*
ID: 15114582
PROG: wissqu
LANG: C++
*/
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int dx[]={0,0,0,-1,1,1,1,-1,-1};
int dy[]={0,-1,1,0,0,-1,1,-1,1};
char map[9][9],q[55],out[55];
int s[9][9][5],v[9][9],num[5],ans;
void CowMov(int x,int y,int c,int v)
{
    for(int i=0;i<9;++i)
        s[x+dx[i]][y+dy[i]][c]+=v;
}
void CowSwp(int x,int y,int c1,int c2)
{
    CowMov(x,y,c1,-1);
    CowMov(x,y,c2,1);
}
void dfs(int t)
{
    if(t>=16)
    {
        q[t*3]='\0';
        if(!ans||strcmp(q,out)<0)strcpy(out,q);
        ++ans;
        return;
    }
    for(int k=0,i,j;k<5;++k)
        if(num[k])
        {
            --num[k];
            for(i=1;i<5;++i)
                for(j=1;j<5;++j)
                    if(!v[i][j]&&!s[i][j][k])
                    {
                        CowSwp(i,j,map[i][j-1]-'A',k);
                        q[t*3]='A'+k,q[t*3+1]=i,q[t*3+2]=j;
                        v[i][j]=1;
                        dfs(t+1);
                        v[i][j]=0;
                        CowSwp(i,j,k,map[i][j-1]-'A');
                    }
            ++num[k];
        }
}
int main()
{
    freopen("wissqu.in","r",stdin);
    freopen("wissqu.out","w",stdout);
    int i,j;
    memset(s,0,sizeof(s));
    memset(v,0,sizeof(v));
    for(i=1;i<5;++i)
    {
        scanf("%s",map[i]);
        for(j=0;j<4;++j)CowMov(i,j+1,map[i][j]-'A',1);
    }
    for(ans=i=0;i<5;++i)num[i]=3;
    for(i=1;i<5;++i)
        for(j=1;j<5;++j)
            if(!s[i][j][3])
            {
                CowSwp(i,j,map[i][j-1]-'A',3);
                q[0]='D',q[1]=i,q[2]=j;
                v[i][j]=1;
                dfs(1);
                v[i][j]=0;
                CowSwp(i,j,3,map[i][j-1]-'A');
            }
    for(i=0;i<16;++i)
        printf("%c %d %d\n",out[i*3],out[i*3+1],out[i*3+2]);
    printf("%d\n",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值