ENGI 48515 Advanced Electonic Measurement 4: Advanced Electronic Measurements: - Communication data

Java Python ENGI 48515

DEPARTMENT OF ENGINEERING COURSEWORK

Title:

Advanced Electonic Measurement 4: Advanced Electronic Measurements:

- Communication data analysis exercise (Ismail Ben-Mabrouk)

Time Required:

It is expected that you should spend approximately 50 hours on this

coursework assignment. This includes all learning related activities completed

during the year (for example, attending lectures/workshops, completing Problem Sheets, etc).

Deadline(s) for submission:

Thursday 16 January 2025 at 14:00hrs.

Date for feedback:

Monday 10 February 2025

Submission instructions:

• Your submission must be uploaded to Learn Ultra/TURNITIN in advance of the deadline.

• All submissions in the Department are electronic and no hard copy is required.

• The maximum file size that can be accepted is 20 MB.

•    All submissions must be saved using the following naming convention: SURNAME-Firstname_ENGI48515_CDA.pdf

E.g. BLOGGS-Joanne_ENGI48515_CDA.pdf

Format:

•     Reports should be submitted in PDF format

• Code files / data files (.c, .m or .iges etc) should be submitted in a zip file

• The report submitted must be no longer than 5 pages (including

diagrams and references). Appendices may be included but will not form part of the examined material nor count toward the page limit.

Coursework brief:

INTRODUCTION

Thanks to the development of wearable sensor devices having wireless transmission capabilities, there is a demand to develop real time systems able to accurately analyse  ECG and detect cardiac  irregularities.  Recent technological advances in signal processing, power consumption management, sensors design, and miniaturisation can revolutionise the way how healthcare services are organized and regulated. While the importance of continuous monitoring of ECG signals to detect cardiac anomalies is generally accepted in preventative medicine, there remain numerous challenges to its widespread adoption [1]. In this coursework, the&nb ENGI 48515 Advanced Electonic Measurement 4: Advanced Electronic Measurements: - Communication data analysis exerciseMatlab sp;proposed healthcare approach is based on implanting sensors in the human body to collect real time ECG changes in order to monitor the patient's health status no matter where they are.  The information is transmitted wirelessly to an external processing unit. The adopted WBAN architecture for ECG monitoring is shown in Figure 1. The used WBAN mechanism permits the transmission of all information in real time to the doctors throughout the world. If an emergency is detected, the physicians will directly inform. the patient through the computer system by sending appropriate messages or alarms. Although real-time patient monitoring field is not a new topic in wireless medical applications, researchers and industries are investing a lot of effort and research funds to it. In this coursework, experimental studies have been conducted using MIMO techniques in the industrial, scientific, and medical (ISM) band at 2.45 GHz where off- body channels will be investigated.

Figure 1: An illustrative top view identifying TX  and RX  positions

MEASUREMENT CAMPAIGN

Measurement campaign are performed in the frequency domain using the frequency channel sounding technique based on measuring S21   parameter using a network analyzer (Agilent E8363B). In fact, the system measurement setup, as shown in Figure 2, consists of a Vector Network Analyser (VNA), 2X2 MIMO textile antenna set (Figure 3), two switches, one power amplifier for the transmitting signal and one low noise amplifier for the receiving signal. Both amplifiers have a gain of 30 dB.

Figure 2:  Measurement setup

Figure 3: Textile antenna array and its implementation scenarios

For all experiments, the receiver remained fixed, while the transmitter changed its position along the gallery, from 1 meter up to 25 meters far from the transmitter with intervals of 1 m. Therefore, the parameters of the channel sounding measurements should be carefully selected in order to assure adequate multipath resolution and at the same time reducing the total time required for the frequency sweep. The VNA sweeps the frequency range from 2 GHZ to 3 GHz for 6401 points and records the 6401 tones. The frequency step is 156.22 KHz which corresponds to time domain duration of 6401 ns. In other words, the measurement system is capable of catching multipath components that arrive with a delay up to 6401 ns. This duration of impulse response is found to be long enough for such indoor environment. The calibration is performed with the transmitting (Tx ) and receiving (Rx ) antenna apart 1m separation distance. This 1m T-R separation distance d0   is chosen to  be the reference distance for the large scale path loss model.  During the measurement,  the wireless  channel  is  assumed  to  be  static  with  no  significant  variations  and  the  height  of  the transmitting and receiving antennas are maintained at 2.5m and 1m respectively above the ground level. The transmit power is set to 10dBm. Two different experimental scenarios are measured: (1) The patient is lying in a sleeping position in bed, with a textile antenna attached to his chest as shown in Figure 1. (2) The patient is in an upright eating position. Experimental datasets (1) and (2) are provided.

COURSEWORK REQUIREMENTS

Based on datasets (1) and (2), write a report addressing all 5 questions by order. Please submit your Matlab code used to solve each question (1-4).

1.   Calculate the Frequency Channel Response and the Power Delay Spread (PDP) for both scenarios at distances 3m, 10m and 20m.

2.   Calculate the Coherence Bandwidth (CB) and the RMS Delay Spread for both scenarios at each distance between the Tx and Rx.

3.   Calculate the channel Path Loss (PL) for both scenarios. Please select the proper radio propagation model (Indoor environment).

4.   Calculate the 2 X 2 MIMO channel capacity for both scenarios at a fixed SNR=30dB.

5.   Compare all your results with the recent existing literature. Only consider indoor environment at the same frequency band.

IMPORTANT NOTE

•     This is an individual assignment. You are required to complete it entirely on your own. This means you must not collaborate with or seek input from others, including friends, relatives, or any current or former students, whether from this or any other university.

•    When submitting your work, you are certifying that it is solely your own, and that you have not engaged with anyone else in the preparation of your answers.

•     Be sure to properly reference any external sources you use. Failure to do so will be regarded as plagiarism         

基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值