寒武纪实现手写causal softmax编程及python端测试

完整的测试仓库参考添加链接描述
在这里插入图片描述
在这里插入图片描述

causal softmax的手写算子

这里为了加速代码,专门针对ndim=2,ndim=3做了特殊处理。

#include "bang.h"
#include "cnrt.h"
const int NRAM_MAX_SIZE = 1024 * 256;
__nram__ char nram_buffer[NRAM_MAX_SIZE];

template<typename T>
__mlu_global__ void causal_softmaxKernel(T *destination, int *strideDest, int *shape, int othersize, int dimsize, int dimS, int mask, int ndim) {
   
    const int SRC_MAX_SIZE = NRAM_MAX_SIZE / 4;
    const int maxNum = SRC_MAX_SIZE / sizeof(T);
    int wSize = 128 / sizeof(T);
    __nram__ T srcMax[2];
    if (dimsize > maxNum) {
   
        T *src = (T *) nram_buffer;        //[maxNum]
        T *destSum = src + maxNum;         //[maxNum]
        T *destSumFinal = destSum + maxNum;//[wSize]
        T *tmp = destSumFinal + wSize;     //[maxNum]

        T destOldMax;
        T destNewMax;

        int remain = dimsize % maxNum;
        int repeat = (dimsize - remain) / maxNum;

        int remainT = othersize % taskDim;
        int stepEasy = (othersize - remainT) / taskDim;
        int stepHard = stepEasy + 1;
        int step = (taskId < remainT ? stepHard : stepEasy);
        int indStart = (taskId < remainT ? taskId * stepHard : (taskId - remainT) * stepEasy + remainT * stepHard);

        for (int i = indStart; i < indStart + step; i++) {
   
            int indd = 0;
            int indi = i;
            int lastI = indi % shape[ndim - 2];
            for (int j = ndim - 2; j >= 0; --j) {
   

                indd += (indi % shape[j]) * strideDest[j];
                indi /= shape[j];
            }

            if (mask + 1 + lastI < maxNum) {
   
                __bang_write_value(src, maxNum, -INFINITY);                                   //提前设置负无穷
                __memcpy(src, destination + indd, (mask + 1 + lastI) * sizeof(T), GDRAM2NRAM);//从destination读取对应数据
                __bang_argmax(srcMax, src, maxNum);                                           //获取最大值
                __bang_write_value(destSum, maxNum, srcMax[0]);
                __memcpy(destSum, src, (mask + 1 + lastI) * sizeof(T), NRAM2NRAM);//destSum前面(mask + 1 + lastI)为src,后面部分为最大值
                __bang_sub_scalar(destSum, destSum, srcMax[0], maxNum);           //destSum前面(mask + 1 + lastI)为(src - M),后面部分为0
                __bang_active_exp_less_0(destSum, destSum, maxNum);               //destSum前面(mask + 1 + lastI)为exp(src - M),后面部分为1
                __bang_write_zero(src, maxNum);                                   //重新设置src全部为0
                __memcpy(src, destSum, (mask + 1 + lastI) * sizeof(T), NRAM2NRAM);//src前面(mask + 1 + lastI)为exp(src - M),后面部分为0

                if (maxNum >= wSize) {
   
                    int segNum = maxNum / wSize;//准备数值求和
                    for (int strip = segNum / 2; strip > 0; strip = strip / 2) {
   
                        for (int j = 0; j < strip; j++) {
   
                            __bang_add(destSum + j * wSize, destSum + j * wSize, destSum + (j + strip) * wSize, wSize);
                        }
                    }
                    __bang_reduce_sum(destSumFinal, destSum, wSize);//此时destSum[0]保存的就是当前maxNum长度数据的数值和

                } else {
   
                    __memcpy(destSumFinal, destSum, maxNum * sizeof(T), NRAM2NRAM);
                    __bang_reduce_sum(destSumFinal, destSumFinal, wSize);//此时destSum[0]保存的就是当前maxNum长度数据的数值和
                }
                T globalSumInv = 1.0 / (destSumFinal[0] - (maxNum - (mask + 1 + lastI)));//下面开始指数变换,写回GDRAM
                __bang_mul_scalar(src, src, globalSumInv, maxNum);

                __memcpy(destination + indd, src, maxNum * sizeof(T), NRAM2GDRAM);
                __bang_write_zero(src, maxNum);
                for (int s = 1; s < repeat; s++) {
   
                    __memcpy(destination + indd + s * maxNum, src, maxNum * sizeof(T), NRAM2GDRAM);
                }
                if (remain) {
   
                    __memcpy(destination + indd + repeat * maxNum, src, remain * sizeof(T), NRAM2GDRAM);
                }
            } else {
   
                int newRemain = (mask + 1 + lastI) % maxNum;
                int nR = (mask + 1 + lastI - newRemain) / maxNum;

                __bang_write_zero(destSum, maxNum);
                __bang_write_zero(destSumFinal, wSize);

                destOldMax = -INFINITY;
                destNewMax = -INFINITY;
                for (int s = 0; s < nR; s++) {
   

                    __memcpy(src, destination + indd + s * maxNum, maxNum * sizeof(T), GDRAM2NRAM);
                    __bang_argmax(srcMax, src, maxNum);

                    if (destNewMax < srcMax[0]) {
   
                        destNewMax = srcMax[0];
                    }
                    __bang_sub_scalar(src, src, destNewMax, maxNum);
                    __bang_active_exp_less_0(src, src, maxNum);

                    if (s > 0) {
   
                        __bang_mul_scalar(destSum, destSum, exp(destOldMax - destNewMax), maxNum);
                    }
                    __bang_add(destSum, destSum, src, maxNum);

                    destOldMax = destNewMax;
                }

                if (newRemain) {
   
                    //__bang_write_value(src, maxNum, -INFINITY);

                    __memcpy(src, destination + indd + nR * maxNum, newRemain * sizeof(T), GDRAM2NRAM);

                    __bang_argmax(srcMax, src, maxNum);

                    if (destNewMax < srcMax[0]) {
   
                        destNewMax = srcMax[0];
                    }

                    __bang_write_value(tmp, maxNum, destNewMax);
                    __memcpy(tmp, src, newRemain * sizeof(T), NRAM2NRAM);

                    __bang_sub_scalar(tmp, tmp, destNewMax, maxNum);
                    __bang_active_exp_less_0(tmp, tmp, maxNum);

                    if (nR > 0) {
   
                        __bang_mul_scalar(destSum, destSum, exp(destOldMax - destNewMax), maxNum);
                    }
                    __bang_add(destSum, destSum, tmp, maxNum);

                    destOldMax = destNewMax;
                }

                if (maxNum >= wSize) {
   
                    int segNum = maxNum / wSize;//准备数值求和
                    for (int strip = segNum / 2; strip > 0; strip = strip / 2) {
   
                        for (int j = 0; j < strip; j++) {
   
                            __bang_add(destSum + j * wSize, destSum + j * wSize, destSum + (j + strip) * wSize, wSize);
                        }
                    }
                    __bang_reduce_sum(destSumFinal, destSum, wSize);//此时destSum[0]保存的就是当前maxNum长度数据的数值和

                } else {
   

                    __memcpy(destSumFinal, destSum, maxNum * sizeof(T), NRAM2NRAM);
                    __bang_reduce_sum(destSumFinal, destSumFinal, wSize);//此时destSum[0]保存的就是当前maxNum长度数据的数值和
                }

                T globalSumInv;
                if (newRemain) {
   
                    globalSumInv = 1.0 / (destSumFinal[0] - (maxNum - newRemain));//下面开始指数变换,写回GDRAM

                } else {
   
                    globalSumInv = 1.0 / destSumFinal[0];//下面开始指数变换,写回GDRAM
                }

                for (int s = 0; s < nR; s++) {
   
                    __memcpy(src, destination + indd + s * maxNum, maxNum * sizeof(T), GDRAM2NRAM);

                    __bang_sub_scalar(src, src, destNewMax, maxNum);
                    __bang_active_exp_less_0(src, src, maxNum);
                    __bang_mul_scalar(src, src, globalSumInv, maxNum);

                    __memcpy(destination + indd + s * maxNum, src, maxNum * sizeof(T), NRAM2GDRAM);
                }
                __bang_write_zero(src, maxNum);
                for (int s = nR; s < repeat; s++) {
   
                    __memcpy(destination + indd + s * maxNum, src, maxNum * sizeof(T), NRAM2GDRAM);
                }
                if (remain) {
   
                    __memcpy(destination + indd + repeat * maxNum, src, remain * sizeof(T), NRAM2GDRAM);
                }

                if (newRemain) {
   

                    __memcpy(src, destination + indd + nR * maxNum, newRemain * sizeof(T), GDRAM2NRAM);

                    __bang_sub_scalar(src, src, destNewMax, maxNum);
                    __bang_active_exp_less_0(src, src, maxNum);
                    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谨慎付费(看不懂试读博客不要订阅)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值