1094. The Largest Generation (25)
A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation. Your task is to find the generation with the largest population.
Input Specification:
Each input file contains one test case. Each case starts with two positive integers N (<100) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<N) which is the number of family members who have children. Then M lines follow, each contains the information of a family member in the following format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a family member, K (>0) is the number of his/her children, followed by a sequence of two-digit ID's of his/her children. For the sake of simplicity, let us fix the root ID to be 01. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the largest population number and the level of the corresponding generation. It is assumed that such a generation is unique, and the root level is defined to be 1.
Sample Input:23 13 21 1 23 01 4 03 02 04 05 03 3 06 07 08 06 2 12 13 13 1 21 08 2 15 16 02 2 09 10 11 2 19 20 17 1 22 05 1 11 07 1 14 09 1 17 10 1 18Sample Output:
9 4
思路分析:建立一棵树(普通的树)表示家谱,进行一次BFS,并在遍历的时候统计每层结点的数目,最后输出最多层的结点数目和层号。
#include <cstdio>
#include <vector>
#include <queue>
#define MAX 101
using namespace std;
typedef struct {
int index;
vector<int> child;
int level;
} Node;
Node node[MAX];
int countLevel[MAX] = { 0 };
int main() {
//freopen( "123.txt", "r", stdin );
int n, m;
scanf( "%d%d", &n, &m );
int id, k;
for( int i = 1; i <= m; i++ ) {
scanf( "%d%d", &id, &k );
node[id].index = id;
int childID;
for( int j = 0; j < k; j++ ) {
scanf( "%d", &childID );
node[id].child.push_back( childID );
}
}
/*
for( int i = 1; i <= n; i++ ) {
printf( "%d node: ", i );
int num = node[i].child.size();
for( int j = 0; j < num; j++ ) {
printf( "%d ", node[i].child[j] );
}
printf( "\n" );
}
*/
int root = 1;
node[root].level = 1;
int maxCount = 0;
int maxLevel = 0;
queue<Node> q;
q.push( node[root] );
while( !q.empty() ) {
Node curNode = q.front();
countLevel[curNode.level]++;
if( countLevel[curNode.level] > maxCount ) {
maxCount = countLevel[curNode.level];
maxLevel = curNode.level;
}
q.pop();
int k = curNode.child.size();
for( int i = 0; i < k; i++ ) {
node[curNode.child[i]].level = curNode.level + 1;
q.push( node[curNode.child[i]] );
}
}
printf( "%d %d", maxCount, maxLevel );
return 0;
}