三相四线制电路典型分析
如图所示的三相四线制电路,电源线电压 UL=380VU_{L} = 380VUL=380V;三个电阻性负载连成星形,其电阻为 Ra=11Ω,Rb=Rc=22ΩR_{a} = 11\Omega,R_{b} = R_{c} = 22\OmegaRa=11Ω,Rb=Rc=22Ω。试求:
(1)负载电压,相电流及中性线电流
(2)如无中性线,求中性点 N’ 电压及负载电压
(3)如无中性线,当 A 相短路时求各相电压和电流
(4)如无中性线,当 C 相断路时求另外两相的电压和电流
(5)在(3)、(4)中如有中性线,则又如何
答:
(1)负载电压、相电流及中性线电流
UP=UL3=3803=220 VU_{P} = \frac{U_{L}}{\sqrt{3}} = \frac{380}{\sqrt{3}} = 220\ VUP=3UL=3380=220 V
UA˙=220∠0∘ V\dot{U_{A}} = 220\angle 0^{\circ}\ VUA˙=220∠0∘ V
UB˙=220 ∠(−120∘ )V\dot{U_{B}} = 220\ \angle( - 120^{\circ}\ )VUB˙=220 ∠(−120∘ )V
UC˙=220∠120∘ V\dot{U_{C}} = 220\angle 120^{\circ}\ VUC˙=220∠120∘ V
IA˙=UA˙Ra=220∠0∘11=20∠0∘ A\dot{I_{A}} = \frac{\dot{U_{A}}}{R_{a}} = \frac{220\angle 0^{\circ}}{11} = 20\angle 0^{\circ}\ AIA˙=RaUA˙=11220∠0∘=20∠0∘ A
IB˙=UB˙Rb=220∠(−120∘)22=10∠(−120∘) A\dot{I_{B}} = \frac{\dot{U_{B}}}{R_{b}} = \frac{220\angle( - 120^{\circ})}{22} = 10\angle( - 120^{\circ})\ AIB˙=RbUB˙=22220∠(−120∘)=10∠(−120∘) A
IC˙=UC˙Rc=220∠120∘22=10∠120∘ A\dot{I_{C}} = \frac{\dot{U_{C}}}{R_{c}} = \frac{220\angle 120^{\circ}}{22} = 10\angle 120^{\circ}\ AIC˙=RcUC˙=22220∠120∘=10∠120∘ A
IN˙=IA˙+IB˙+IC˙=20∠0∘+10∠(−120∘)+10∠120∘=10∠0∘ A\dot{I_{N}} = \dot{I_{A}} + \dot{I_{B}} + \dot{I_{C}} = 20\angle 0^{\circ} + 10\angle( - 120^{\circ}) + 10\angle 120^{\circ} = 10\angle 0^{\circ}\ AIN˙=IA˙+IB˙+IC˙=20∠0∘+10∠(−120∘)+10∠120∘=10∠0∘ A
(2)无中性线时,中性点 N’ 电压及负载电压
设 N’ 点电压 UN′˙=x∠θ V\dot{U_{N'}} = x\angle\theta\ VUN′˙=x∠θ V,则 UN′˙=xcosθ+jxsinθ\dot{U_{N'}} = x\cos\theta + jx\sin\thetaUN′˙=xcosθ+jxsinθ V
U˙Ra=U˙A−U˙N′=(220−xcosθ)−j(xsinθ) VIRa˙=URa˙Ra=220−xcosθ−jxsinθ11=440−2xcosθ22+j−2xsinθ22 AU˙Rb=U˙B−U˙N′=(−110−j1103)−(xcosθ+jxsinθ) VIRb˙=URb˙Rb=(−110−xcosθ)−j(xsinθ+1103)22=−110−xcosθ22+j−xsinθ−110322 AU˙Rc=U˙C−U˙N′=(−110+j1103)−(xcosθ+jxsinθ) VIRc˙=URc˙Rc=(−110−xcosθ)+j(1103−xsinθ)22=−110−xcosθ22+j−xsinθ+110322 A\begin{align} \dot{U}_{R_{a}} &= \dot{U}_{A} - \dot{U}_{N'} = (220 - x\cos\theta) - j(x\sin\theta) \ \text{V} \\ \dot{I_{Ra}} &= \frac{\dot{U_{R_{a}}}}{R_{a}} = \frac{220 - x\cos\theta - jx\sin\theta}{11} = \frac{440 - 2x\cos\theta}{22} + j\frac{-2x\sin\theta}{22} \ \text{A} \\ \dot{U}_{R_{b}} &= \dot{U}_{B} - \dot{U}_{N'} = (-110 - j110\sqrt{3}) - (x\cos\theta + jx\sin\theta) \ \text{V} \\ \dot{I_{R_{b}}} &= \frac{\dot{U_{R_{b}}}}{R_{b}} = \frac{(-110 - x\cos\theta) - j(x\sin\theta + 110\sqrt{3})}{22} = \frac{-110 - x\cos\theta}{22} + j\frac{-x\sin\theta - 110\sqrt{3}}{22} \ \text{A} \\ \dot{U}_{R_{c}} &= \dot{U}_{C} - \dot{U}_{N'} = (-110 + j110\sqrt{3}) - (x\cos\theta + jx\sin\theta) \ \text{V} \\ \dot{I_{R_{c}}} &= \frac{\dot{U_{R_{c}}}}{R_{c}} = \frac{(-110 - x\cos{\theta)} + j(110\sqrt{3} - x\sin\theta)}{22} = \frac{-110 - x\cos\theta}{22} + j\frac{-x\sin\theta + 110\sqrt{3}}{22} \ \text{A} \end{align}U˙RaIRa˙U˙RbIRb˙U˙RcIRc˙=U˙A−U˙N′=(220−xcosθ)−j(xsinθ) V=RaURa˙=11220−xcosθ−jxsinθ=22440−2xcosθ+j22−2xsinθ A=U˙B−U˙N′=(−110−j1103)−(xcosθ+jxsinθ) V=RbURb˙=22(−110−xcosθ)−j(xsinθ+1103)=22−110−xcosθ+j22−xsinθ−1103 A=U˙C−U˙N′=(−110+j1103)−(xcosθ+jxsinθ) V=RcURc˙=22(−110−xcosθ)+j(1103−xsinθ)=22−110−xcosθ+j22−xsinθ+1103 A
虚部相加等于零:
−2xsinθ−xsinθ−1103+1103−xsinθ=0-2x\sin\theta - x\sin\theta - 110\sqrt{3} + 110\sqrt{3} - x\sin\theta = 0−2xsinθ−xsinθ−1103+1103−xsinθ=0
化简得 xsinθ=0x\sin\theta = 0xsinθ=0
因 x≠0x \neq 0x=0 V,故 θ=0∘\theta = 0^{\circ}θ=0∘
实部相加等于零:
440−2xcosθ−110−xcosθ−110−xcosθ=0440 - 2x\cos\theta - 110 - x\cos\theta - 110 - x\cos\theta = 0440−2xcosθ−110−xcosθ−110−xcosθ=0
化简得 xcosθ=55x\cos\theta = 55xcosθ=55
因 θ=0∘\theta = 0^{\circ}θ=0∘,故 x=55x = 55x=55 V
U˙Ra=U˙A−U˙N′=165∠0∘ VU˙Rb=U˙B−U˙N′=−165−j1103=252∠−130.9∘ VU˙Rc=U˙C−U˙N′=−165+j1103=252∠130.9∘ V\begin{align} \dot{U}_{R_{a}} &= \dot{U}_{A} - \dot{U}_{N'} = 165\angle 0^{\circ} \ \text{V} \\ \dot{U}_{R_{b}} &= \dot{U}_{B} - \dot{U}_{N'} = -165 - j110\sqrt{3} = 252\angle{-130.9}^{\circ} \ \text{V} \\ \dot{U}_{R_{c}} &= \dot{U}_{C} - \dot{U}_{N'} = -165 + j110\sqrt{3} = 252\angle{130.9}^{\circ} \ \text{V} \end{align}U˙RaU˙RbU˙Rc=U˙A−U˙N′=165∠0∘ V=U˙B−U˙N′=−165−j1103=252∠−130.9∘ V=U˙C−U˙N′=−165+j1103=252∠130.9∘ V
(3)无中性线且 A 相短路时
U˙Rb=U˙B−U˙A=220∠(−120∘)−220∠0∘=−330−j1103=380∠(−150∘) VU˙Rc=U˙C−U˙A=380∠150∘ VIRb˙=URb˙Rb=380∠(−150∘)22=17.3∠(−150∘) AIRc˙=URc˙Rc=380∠150∘22=17.3∠150∘ AI˙Ra=−(I˙Rb+I˙Rc)=30∠0∘ A\begin{align} \dot{U}_{R_{b}} &= \dot{U}_{B} - \dot{U}_{A} = 220\angle(-120^{\circ}) - 220\angle 0^{\circ} = -330 - j110\sqrt{3} = 380\angle(-150^{\circ}) \ \text{V} \\ \dot{U}_{R_{c}} &= \dot{U}_{C} - \dot{U}_{A} = 380\angle 150^{\circ} \ \text{V} \\ \dot{I_{R_{b}}} &= \frac{\dot{U_{R_{b}}}}{R_{b}} = \frac{380\angle(-150^{\circ})}{22} = 17.3\angle(-150^{\circ}) \ \text{A} \\ \dot{I_{R_{c}}} &= \frac{\dot{U_{R_{c}}}}{R_{c}} = \frac{380\angle 150^{\circ}}{22} = 17.3\angle 150^{\circ} \ \text{A} \\ \dot{I}_{R_{a}} &= - (\dot{I}_{R_{b}} + \dot{I}_{R_{c}}) = 30\angle 0^{\circ} \ \text{A} \end{align}U˙RbU˙RcIRb˙IRc˙I˙Ra=U˙B−U˙A=220∠(−120∘)−220∠0∘=−330−j1103=380∠(−150∘) V=U˙C−U˙A=380∠150∘ V=RbURb˙=22380∠(−150∘)=17.3∠(−150∘) A=RcURc˙=22380∠150∘=17.3∠150∘ A=−(I˙Rb+I˙Rc)=30∠0∘ A
(4)无中性线且 C 相断路时
IBA˙=UB˙−UA˙RA+RB=380∠(−150∘)11+22=11.5∠(−150∘) AURa˙=IBA˙⋅Ra=11.5∠(−150∘)⋅11=127∠(−150∘) VURb˙=IBA˙⋅Rb=11.5∠(−150∘)⋅22=253∠(−150∘) V\begin{align} \dot{I_{BA}} &= \frac{\dot{U_{B}} - \dot{U_{A}}}{R_{A} + R_{B}} = \frac{380\angle(-150^{\circ})}{11 + 22} = 11.5\angle(-150^{\circ}) \ \text{A} \\ \dot{U_{R_{a}}} &= \dot{I_{BA}} \cdot R_{a} = 11.5\angle(-150^{\circ}) \cdot 11 = 127\angle(-150^{\circ}) \ \text{V} \\ \dot{U_{R_{b}}} &= \dot{I_{BA}} \cdot R_{b} = 11.5\angle(-150^{\circ}) \cdot 22 = 253\angle(-150^{\circ}) \ \text{V} \end{align}IBA˙URa˙URb˙=RA+RBUB˙−UA˙=11+22380∠(−150∘)=11.5∠(−150∘) A=IBA˙⋅Ra=11.5∠(−150∘)⋅11=127∠(−150∘) V=IBA˙⋅Rb=11.5∠(−150∘)⋅22=253∠(−150∘) V
(5)若有中性线时
- 情况(3):A 相短路导致火线与中线短路(故障状态)
- 情况(4):A、B 相电压电流保持正常(不受影响)