推荐经典算法实现之NCF(pytorch+MovieLen)

# coding:utf-8  
'''
@author: Jason.F
@data: 2019.07.11
@function: Implementing NCF with Torch  
           Dataset: Movielen Dataset(ml-1m) 
           Evaluating: hitradio,ndcg
           https://arxiv.org/pdf/1708.05031.pdf
           https://github.com/hexiangnan/neural_collaborative_filtering
'''
import pandas as pd
import numpy as np
import math
from collections import defaultdict
import heapq
import scipy.sparse as sp
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
import torch.backends.cudnn as cudnn
import os

class NCFData(torch.utils.data.Dataset):#define the dataset
    def __init__(self, features, num_item, train_mat=None, num_ng=0, is_training=None):
        super(NCFData, self).__init__()
        # Note that the labels are only useful when training, we thus add them in the ng_sample() function.
        self.features_ps = features
        self.num_item = num_item
        self.train_mat = train_mat
        self.num_ng = num_ng
        self.is_training = is_training
        self.labels = [0 for _ in range(len(features))]

    def ng_sample(self):
        assert self.is_training, 'no need to sampling when testing'
        self.features_ng = []
        for x in self.features_ps:
            u = x[0]
            for t in range(self.num_ng):
                j = np.random.randint(self.num_item)
                while (u, j) in self.train_mat:
                    j = np.random.randint(self.num_item)
                self.features_ng.append([u, j])
        
        labels_ps = [1 for _ in range(len(self.features_ps))]
        labels_ng = [0 for _ in range(len(self.features_ng))]
        
        self.features_fill = self.features_ps + self.features_ng
        self.labels_fill = labels_ps + labels_ng
        
    def __len__(self):
        return (self.num_ng + 1) * len(self.labels)
    
    def __getitem__(self, idx):
        '''
        if self.is_training:
            self.ng_sample()
            features = self.features_fill
            labels = self.labels_fill
        else:
            features = self.features_ps
            labels = self.labels
        '''
        features = self.features_fill if self.is_training else s
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值