Python机器学习与深度学习之二:数据预处理

本文介绍了使用Python进行数据预处理的方法,包括最值化调整、标准化、正态化及二值化等常见操作,并展示了如何利用sklearn库实现这些转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、最值化调整数据

import pandas as pd
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

iris  = datasets.load_iris()

names = ['separ-length','separ-width','petal-length','petal-width','class']
data  = pd.read_csv(r'iris.csv',names = names)

array = data.values
X     = array[:,0:4]
Y     = array[:,4]
transformer = MinMaxScaler(feature_range=(0,1))

newX  = transformer.fit_transform(X)
np.set_printoptions(precision = 3)

print(newX)

运行结果:

二、标准化数据

import pandas as pd
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler

iris  = datasets.load_iris()

names = ['separ-length','separ-width','petal-length','petal-width','class']
data  = pd.read_csv(r'iris.csv',names = names)

array = data.values
X     = array[:,0:4]
Y     = array[:,4]
transformer = StandardScaler().fit(X)

newX  = transformer.transform(X)
np.set_printoptions(precision = 3)

print(newX)

三、正态化(归一化)数据

import pandas as pd
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.preprocessing import Normalizer

iris  = datasets.load_iris()

names = ['separ-length','separ-width','petal-length','petal-width','class']
data  = pd.read_csv(r'iris.csv',names = names)

array = data.values
X     = array[:,0:4]
Y     = array[:,4]
transformer = Normalizer().fit(X)

newX  = transformer.transform(X)
np.set_printoptions(precision = 3)

print(newX)

四、二值化数据

import pandas as pd
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.preprocessing import Binarizer

iris  = datasets.load_iris()

names = ['separ-length','separ-width','petal-length','petal-width','class']
data  = pd.read_csv(r'iris.csv',names = names)

array = data.values
X     = array[:,0:4]
Y     = array[:,4]
transformer = Binarizer(threshold = 0.0).fit(X)

newX  = transformer.transform(X)
np.set_printoptions(precision = 3)

print(newX)

运行结果:

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值