一、最值化调整数据
import pandas as pd
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
iris = datasets.load_iris()
names = ['separ-length','separ-width','petal-length','petal-width','class']
data = pd.read_csv(r'iris.csv',names = names)
array = data.values
X = array[:,0:4]
Y = array[:,4]
transformer = MinMaxScaler(feature_range=(0,1))
newX = transformer.fit_transform(X)
np.set_printoptions(precision = 3)
print(newX)
运行结果:
二、标准化数据
import pandas as pd
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
iris = datasets.load_iris()
names = ['separ-length','separ-width','petal-length','petal-width','class']
data = pd.read_csv(r'iris.csv',names = names)
array = data.values
X = array[:,0:4]
Y = array[:,4]
transformer = StandardScaler().fit(X)
newX = transformer.transform(X)
np.set_printoptions(precision = 3)
print(newX)
三、正态化(归一化)数据
import pandas as pd
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.preprocessing import Normalizer
iris = datasets.load_iris()
names = ['separ-length','separ-width','petal-length','petal-width','class']
data = pd.read_csv(r'iris.csv',names = names)
array = data.values
X = array[:,0:4]
Y = array[:,4]
transformer = Normalizer().fit(X)
newX = transformer.transform(X)
np.set_printoptions(precision = 3)
print(newX)
四、二值化数据
import pandas as pd
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn.preprocessing import Binarizer
iris = datasets.load_iris()
names = ['separ-length','separ-width','petal-length','petal-width','class']
data = pd.read_csv(r'iris.csv',names = names)
array = data.values
X = array[:,0:4]
Y = array[:,4]
transformer = Binarizer(threshold = 0.0).fit(X)
newX = transformer.transform(X)
np.set_printoptions(precision = 3)
print(newX)
运行结果: