--多边形与圆形碰撞
function PolygonToCircle(polygon,circlePos,radius)
local vectorNum = polygon:VectorNumber();
local next = 0
for current = 0 , vectorNum do
if (current == vectorNum - 1) then
next = 0
else
next = current + 1
end
local vc = polygon:GetVector(current)
local vn = polygon:GetVector(next)
--线是否与圆碰撞
if LineToCircle(vc,vn,circlePos,radius) then
return true
end
end
--多边形是否与圆点碰撞
PolygonToPoint(polygon,circlePos)
end
--线与圆的碰撞
function LineToCircle(linePoint1,linePoint2,circlePos,radius)
--这里需要分成两种情况,一种是线段两边的点是否在圆内
--如果点到半径的距离
if PointToCircle(linePoint1,circlePos,radius) then
return true
end
if PointToCircle(linePoint2,circlePos,radius) then
return true
end
--寻找圆心最近的点
local lineVec = {x= (linePoint2.x - linePoint1.x) , y = (linePoint2.y - linePoint1.y)}
local pointToLinePoint1 = {x= (circlePos.x - linePoint1.x) , y = (circlePos.y - linePoint1.y)}
local lineLength = math.sqrt(lineVec.x * lineVec.x + lineVec.y * lineVec.y)
--点乘向量公式 相当于 lineLength * pointLinePoint1Length * cos角度
local dot = lineVec.x * pointToLinePoint1.x + lineVec.y * pointToLinePoint1.y
--这里就是pointLinePoint1Length * cos角度 及为lineVec 的投影长度,温馨提示pointLinePoint1ToLine可能为正负值 取决于向量的夹角的cos值
--相当于到线段的投影比例
local pointLinePoint1ToLine = dot / lineLength
local closestX = linePoint1.x + pointLinePoint1ToLine * (linePoint2.x - linePoint1.x)
local closestY = linePoint1.y + pointLinePoint1ToLine * (linePoint2.y - linePoint1.y)
local isInLine = PointToLine({ x = closestX,y = closestY} , linePoint1, linePoint2)
--如果点不在线上面(就是相当于他是在延长线 ) 直接returnfalse
if not isInLine then
return false;
end
--点跟圆的碰撞
local result = PointToCircle({ x = closestX,y = closestY},circlePos,radius)
return result
end
--点与直线的碰撞
function PointToLine(point , linePoint1, linePoint2)
--思想点与线两边线段的距离跟线的距离的判断,相等就是在同一直线
local line1 = math.sqrt((linePoint1.x - point.x) * (linePoint1.x - point.x) + (linePoint1.y - point.y)* (linePoint1.y - point.y))
local line2 = math.sqrt((linePoint2.x - point.x) * (linePoint2.x - point.x) + (linePoint2.y - point.y)* (linePoint2.y - point.y))
local line = math.sqrt((linePoint2.x - linePoint1.x) * (linePoint2.x - linePoint1.x) + (linePoint2.y - linePoint1.y)* (linePoint2.y - linePoint1.y))
return (line1 + line2) == line
end
--圆跟圆是否碰撞
function CircleToCircle (circlePos1,radius1,circlePos2,radius2)
local sqr2 = (circlePos1.x - circlePos2.x) * (circlePos1.x - circlePos2.x) + (circlePos1.y - circlePos2.y)*(circlePos1.y - circlePos2.y)
return (radius1+radius2) * (radius1+radius2) >= sqr2
end
--多边形与点的碰撞
function PolygonToPoint(polygon,point)
local vectorNum = polygon:VectorNumber();
local collision = false
local next = 0
for current = 0 , vectorNum do
if (current == vectorNum - 1) then
next = 0
else
next = current + 1
end
local vc = polygon:GetVector(current)
local vn = polygon:GetVector(next)
if PointToLine(point,vc, vn) then
return true
end
--若尔当曲线定理 需要的同学可以去学习一下
if (((vc.y >= py and vn.y < py) or (vc.y < py and vn.y >= py)) and
(px < (vn.x - vc.x) * (py - vc.y) / (vn.y - vc.y) + vc.x)) then
collision = not collision
end
end
return collision
end