将上述修改应用到下述代码里,将修改后的完整代码发给我。%% 海底管道水合物堵塞风险综合分析模型
% 集成多相流动力学、热力学传递、水合物相变动力学和概率分析
tic;
clc;
clear;
close all;
% 设置中文字体避免乱码
set(groot, 'defaultAxesFontName', 'SimHei');
set(groot, 'defaultTextFontName', 'SimHei');
set(groot, 'defaultAxesFontSize', 10);
%% 模型参数设置
L = 5000; % 管道长度(m)
D = 0.3; % 管道直径(m)
Pin = 15e6; % 入口压力(Pa) - 定值
T_in = 300; % 入口温度(K) - 定值
N = 150; % 空间离散点数
dx = L/(N-1);
x = linspace(0, L, N);
% 工况定义 (1=稳定生产, 2=停输, 3=再启动)
operational_mode = 1; % 默认稳定生产
t_end = 1*3600; % 仿真时间(s)
dt = 1; % 时间步长
CFL = 0.4; % CFL数
% 预分配结果矩阵
max_steps = ceil(t_end/dt) + 100; % 最大可能时间步数
results = zeros(max_steps, N, 10); % 时间×位置×变量矩阵
step_count = 0; % 实际时间步计数
time_vector = []; % 时间向量
%% 多相流物性参数
rho_o = 820; mu_o = 0.0085; % 油相
rho_w = 1040; mu_w = 0.0012; % 水相
rho_g = 1.15; mu_g = 1.5e-5; % 气相
rho_h = 910; % 水合物
% 初始相分数 (概率分布)
alpha_o = truncate_distribution(@normrnd, 0.35, 0.05, [1,N], 0.2, 0.5);
alpha_w = truncate_distribution(@normrnd, 0.55, 0.07, [1,N], 0.4, 0.7);
alpha_g = 1 - alpha_o - alpha_w;
alpha_h = zeros(1, N); % 水合物体积分数
%% 热力学参数
T_sea = 277; % 海水温度(K) ≈4°C
U = 12; % 总传热系数(W/m²·K)
c_o = 1900; c_w = 4180; c_g = 1040; c_h = 2200; % 比热容(J/kg·K)
H_latent = 480e3; % 水合物生成潜热(J/kg)
k_cond = 0.52; % 流体导热系数(W/m·K)
% 水合物相平衡参数 (van der Waals-Platteeuw模型)
A_hyd = -12.8; B_hyd = 2950; C_hyd = 0.012;
k_kinetic = 1.2e-5; % 生成动力学常数
Ea = 48e3; % 活化能(J/mol)
R_gas = 8.314; % 气体常数
%% 抑制剂参数 (甲醇/乙二醇)
inhibitor_type = 1; % 1=甲醇, 2=乙二醇
C_inhibitor = 0.15; % 初始抑制剂浓度(质量分数)
k_MeOH = 0.25; % 甲醇抑制系数
k_MEG = 0.18; % 乙二醇抑制系数
%% 概率模型参数
n_mc_samples = 500; % 蒙特卡洛样本数
risk_threshold = 0.7; % 堵塞风险阈值
prior_risk = 0.3; % 先验堵塞概率
%% 初始化变量
P = linspace(Pin, 1e5, N); % 压力分布
T = linspace(T_in, T_sea+5, N); % 温度分布
u = 2.5*ones(1, N); % 流速(m/s)
D_eff = D*ones(1, N); % 有效管径
risk_prob = prior_risk*ones(1, N); % 堵塞概率
% 创建贝叶斯更新函数
bayesian_update = @(prior, likelihood) (prior .* likelihood) ./ ...
(prior .* likelihood + (1-prior).*(1-likelihood));
%% 主仿真循环
for t = 0:dt:t_end
step_count = step_count + 1;
time_vector(step_count) = t;
% 动态调整时间步长 (CFL条件)
u_max = max(abs(u));
dt = min(dt, CFL*dx/(u_max + 1e-3));
% 根据工况更新边界条件
switch operational_mode
case 1 % 稳定生产
P(1) = Pin; % 固定入口压力
T(1) = T_in; % 固定入口温度
u(1) = 2.5; % 固定入口流速
case 2 % 停输工况
if t < 100
u = u * exp(-0.05*t); % 流速指数衰减
else
u = zeros(1, N); % 完全停输
end
T(1) = T_sea + (T(1)-T_sea)*exp(-0.001*t); % 温度衰减
case 3 % 再启动工况
if t < 50
u(1) = 1.0 * (1 - exp(-0.1*t)); % 流速逐渐增加
P(1) = 1.5*Pin; % 初始高压
else
u(1) = 3.0; % 稳定流速
P(1) = Pin;
end
% 油嘴节流效应
choke_position = max(0.2, 0.8*exp(-0.02*t));
P(end) = P(end-1)*choke_position;
end
% 计算相平衡压力 (考虑抑制剂)
P_eq = hydrate_equilibrium(T, A_hyd, B_hyd, C_hyd);
if inhibitor_type == 1
P_eq = P_eq .* (1 - k_MeOH*C_inhibitor); % 甲醇抑制效应
else
P_eq = P_eq .* (1 - k_MEG*C_inhibitor); % 乙二醇抑制效应
end
% === 多相流计算 ===
rho_mix = alpha_o.*rho_o + alpha_w.*rho_w + alpha_g.*rho_g + alpha_h.*rho_h;
cp_mix = (alpha_o.*rho_o*c_o + alpha_w.*rho_w*c_w + ...
alpha_g.*rho_g*c_g + alpha_h.*rho_h*c_h) ./ rho_mix;
% 粘度模型 (Einstein-Roscoe)
mu_mix = mu_o.*(1 + 2.5*alpha_h + 10.05*alpha_h.^2);
% 雷诺数和摩擦系数
Re = rho_mix .* abs(u) * D ./ mu_mix;
f = 0.0014 + 0.125 * Re.^(-0.32);
f(Re < 2300) = 64./max(Re(Re<2300), 1e-3);
% === 相分数方程 (迎风格式) ===
for i = 2:N-1
dir = sign(u(i));
% 油相连续性
dalpha_o_dx = (alpha_o(i) - alpha_o(i-1))/dx;
alpha_o(i) = alpha_o(i) - dt*u(i)*dalpha_o_dx;
% 水相连续性
dalpha_w_dx = (alpha_w(i) - alpha_w(i-1))/dx;
alpha_w(i) = alpha_w(i) - dt*u(i)*dalpha_w_dx;
% 气相连续性 (考虑压缩性)
dalpha_g_dx = (alpha_g(i) - alpha_g(i-1))/dx;
div_u = (u(i+1) - u(i-1))/(2*dx);
alpha_g(i) = alpha_g(i) - dt*(u(i)*dalpha_g_dx + alpha_g(i)*div_u);
end
% 相分数归一化
alpha_sum = alpha_o + alpha_w + alpha_g + alpha_h;
alpha_o = alpha_o ./ alpha_sum;
alpha_w = alpha_w ./ alpha_sum;
alpha_g = alpha_g ./ alpha_sum;
alpha_h = alpha_h ./ alpha_sum;
% === 水合物生成动力学 ===
dalpha_h_dt = zeros(1, N);
for i = 2:N-1
% 生成条件: 过冷度+水气存在
subcooling = max(0, (P_eq(i) - P(i))/1e6); % MPa过冷度
if subcooling > 0.1 && alpha_w(i) > 0.05 && alpha_g(i) > 0.05
% Englezos动力学模型
dalpha_h_dt(i) = k_kinetic * exp(-Ea/(R_gas*T(i))) * ...
subcooling * alpha_g(i) * alpha_w(i);
% 限制最大生成速率
max_rate = min(alpha_g(i), alpha_w(i))/(5*dt);
dalpha_h_dt(i) = min(dalpha_h_dt(i), max_rate);
alpha_h(i) = alpha_h(i) + dt * dalpha_h_dt(i);
alpha_g(i) = alpha_g(i) - dt * dalpha_h_dt(i);
alpha_w(i) = alpha_w(i) - dt * dalpha_h_dt(i);
end
end
% === 热力学模型 ===
dTdt = zeros(1, N);
q_hyd = rho_h * H_latent .* dalpha_h_dt; % 水合物生成热源
% 立管膨胀放热效应
if operational_mode == 3 && t < 100
expansion_heat = 150*(1 - exp(-0.1*t)); % 膨胀放热模型
else
expansion_heat = 0;
end
for i = 2:N-1
% 热对流项
if u(i) >= 0
dTdx = (T(i) - T(i-1)) / dx;
else
dTdx = (T(i+1) - T(i)) / dx;
end
% 热传导项
d2Tdx2 = (T(i-1) - 2*T(i) + T(i+1)) / dx^2;
% 管壁热交换 + 立管膨胀放热
q_wall = (4*U/D) * (T_sea - T(i)) + expansion_heat;
% 能量方程
dTdt(i) = -u(i)*dTdx + (k_cond/(rho_mix(i)*cp_mix(i)))*d2Tdx2 ...
+ q_wall/(rho_mix(i)*cp_mix(i)) ...
+ q_hyd(i)/(rho_mix(i)*cp_mix(i));
end
% 油嘴节流效应 (再启动工况)
if operational_mode == 3 && t < 300
JT_coeff = -0.3; % Joule-Thomson系数(K/MPa)
deltaP = (P(end-1) - P(end))/1e6; % 压降(MPa)
T(end) = T(end-1) + JT_coeff * deltaP; % 节流温降
end
% 时间积分
T(2:N-1) = T(2:N-1) + dt * dTdt(2:N-1);
% 温度边界条件
T(end) = T(end-1); % 出口绝热
% === 概率风险评估 ===
% 计算堵塞风险指标
subcooling = max(0, (P_eq - P)./1e6);
risk_indicator = alpha_h .* subcooling .* (1 - C_inhibitor);
% 贝叶斯风险更新
likelihood = 1 - exp(-0.5*risk_indicator); % 风险似然函数
risk_prob = bayesian_update(risk_prob, likelihood);
% === 存储结果到矩阵 ===
% 变量索引:
% 1:alpha_o, 2:alpha_w, 3:alpha_g, 4:alpha_h,
% 5:P, 6:T, 7:u, 8:risk_prob, 9:subcooling, 10:D_eff
results(step_count, :, 1) = alpha_o;
results(step_count, :, 2) = alpha_w;
results(step_count, :, 3) = alpha_g;
results(step_count, :, 4) = alpha_h;
results(step_count, :, 5) = P;
results(step_count, :, 6) = T;
results(step_count, :, 7) = u;
results(step_count, :, 8) = risk_prob;
results(step_count, :, 9) = subcooling;
results(step_count, :, 10) = D_eff;
% === 可视化更新 ===
if mod(t, 100) == 0
visualize_system(x, alpha_o, alpha_w, alpha_g, alpha_h, P, T, u, ...
risk_prob, D_eff, operational_mode, t);
end
end
% 截取实际使用的矩阵部分
results = results(1:step_count, :, :);
%% 保存结果到结构体
simulationResults = struct();
simulationResults.time = time_vector; % 时间向量 (1×step_count)
simulationResults.position = x; % 位置向量 (1×N)
simulationResults.alpha_o = squeeze(results(:, :, 1)); % 油相分数 (step_count×N)
simulationResults.alpha_w = squeeze(results(:, :, 2)); % 水相分数 (step_count×N)
simulationResults.alpha_g = squeeze(results(:, :, 3)); % 气相分数 (step_count×N)
simulationResults.alpha_h = squeeze(results(:, :, 4)); % 水合物分数 (step_count×N)
simulationResults.pressure = squeeze(results(:, :, 5));% 压力 (step_count×N)
simulationResults.temperature = squeeze(results(:, :, 6));% 温度 (step_count×N)
simulationResults.velocity = squeeze(results(:, :, 7));% 流速 (step_count×N)
simulationResults.risk_prob = squeeze(results(:, :, 8));% 风险概率 (step_count×N)
simulationResults.subcooling = squeeze(results(:, :, 9));% 过冷度 (step_count×N)
simulationResults.diameter = squeeze(results(:, :, 10));% 有效管径 (step_count×N)
% 保存到工作空间
assignin('base', 'simulationResults', simulationResults);
% 保存到文件
save('pipeline_simulation_results.mat', 'simulationResults');
fprintf('\n模拟完成! 结果已保存到结构体 simulationResults\n');
fprintf('矩阵维度: 时间步数 × 空间位置\n');
fprintf('时间步数: %d, 空间位置数: %d\n', step_count, N);
toc;
%% 可视化存储结果
figure('Position', [100, 100, 1200, 800])
% 1. 风险概率等高线图
subplot(2,2,1)
contourf(x, time_vector, simulationResults.risk_prob, 20, 'LineColor', 'none')
colorbar
xlabel('管长位置 (m)')
ylabel('时间 (s)')
title('堵塞风险概率分布')
colormap(jet)
% 2. 温度等高线图
subplot(2,2,2)
contourf(x, time_vector, simulationResults.temperature, 20, 'LineColor', 'none')
colorbar
xlabel('管长位置 (m)')
ylabel('时间 (s)')
title('温度分布 (K)')
colormap(jet)
% 3. 水合物体积分数变化
subplot(2,2,3)
plot(x, simulationResults.alpha_h(end, :), 'LineWidth', 2)
xlabel('管长位置 (m)')
ylabel('水合物体积分数')
title('最终水合物分布')
grid on
% 4. 风险概率变化
subplot(2,2,4)
plot(x, simulationResults.risk_prob(end, :), 'LineWidth', 2)
xlabel('管长位置 (m)')
ylabel('堵塞风险概率')
title('最终风险概率分布')
grid on
%% 辅助函数
function P_eq = hydrate_equilibrium(T, A, B, C)
% van der Waals-Platteeuw水合物相平衡模型
P_eq = exp(A + B./T + C*T); % 单位: Pa
end
function samples = truncate_distribution(dist_func, mean, std, size, lb, ub)
% 生成截断分布样本
samples = dist_func(mean, std, size);
samples(samples < lb) = lb;
samples(samples > ub) = ub;
end
function visualize_system(x, alpha_o, alpha_w, alpha_g, alpha_h, P, T, u, ...
risk_prob, D_eff, mode, t)
% 系统状态可视化
persistent fig;
if isempty(fig) || ~isvalid(fig)
fig = figure('Position', [100, 100, 1400, 900]);
end
% 工况名称
mode_names = {'稳定生产', '停输', '再启动'};
subplot(3,2,1);
plot(x, alpha_o, 'b', x, alpha_w, 'g', x, alpha_g, 'r', x, alpha_h, 'm');
title(['各相体积分数 (工况: ', mode_names{mode}, ')']);
xlabel('管道位置 (m)'); ylabel('体积分数');
legend('油相', '水相', '气相', '水合物');
grid on;
subplot(3,2,2);
[ax, h1, h2] = plotyy(x, P/1e6, x, T-273);
title('压力与温度分布');
xlabel('管道位置 (m)');
ylabel(ax(1), '压力 (MPa)');
ylabel(ax(2), '温度 (°C)');
grid on;
subplot(3,2,3);
plot(x, u);
title('流速分布');
xlabel('管道位置 (m)'); ylabel('流速 (m/s)');
grid on;
subplot(3,2,4);
plot(x, risk_prob);
title('堵塞风险概率');
xlabel('管道位置 (m)'); ylabel('概率');
ylim([0, 1]); grid on;
subplot(3,2,5);
plot(x, D_eff);
title('有效管径变化');
xlabel('管道位置 (m)'); ylabel('管径 (m)');
grid on;
subplot(3,2,6);
text(0.05, 0.7, ['时间: ', num2str(t), ' s'], 'FontSize', 12);
text(0.05, 0.5, ['工况: ', mode_names{mode}], 'FontSize', 12);
text(0.05, 0.3, ['最大风险概率: ', num2str(max(risk_prob))], 'FontSize', 12);
axis off;
drawnow;
end