codeforces 915 D Almost Acyclic Graph

Description

You are given a directed graph consisting of n vertices and m edges (each edge is directed, so it can be traversed in only one direction). You are allowed to remove at most one edge from it.

Can you make this graph acyclic by removing at most one edge from it? A directed graph is called acyclic iff it doesn’t contain any cycle (a non-empty path that starts and ends in the same vertex).

Input

The first line contains two integers n and m (2 ≤ n ≤ 500, 1 ≤ m ≤ min(n(n - 1), 100000)) — the number of vertices and the number of edges, respectively.

Then m lines follow. Each line contains two integers u and v denoting a directed edge going from vertex u to vertex v (1 ≤ u, v ≤ n, u ≠ v). Each ordered pair (u, v) is listed at most once (there is at most one directed edge from u to v).

Output

If it is possible to make this graph acyclic by removing at most one edge, print YES. Otherwise, print NO.

Examples

Input
3 4
1 2
2 3
3 2
3 1
Output
YES

Input
5 6
1 2
2 3
3 2
3 1
2 1
4 5
Output
NO

Note

In the first example you can remove edge , and the graph becomes acyclic.

In the second example you have to remove at least two edges (for example, and ) in order to make the graph acyclic.


题意:给一个有向边的图,判断能否去掉一条边使其成为无环图。
思路:先dfs搜索一遍,把找到的第一个环返回;如果没有环打印YES。要成为无环图,那么这个环上一定要去掉一条边。所以只需要遍历这个环上所有的边,检查去掉后图上还有无其他的环,如果去掉一条边后图上无环,那么打印YES;如果去掉任何一条边都不能,打印NO。

#include<stdio.h>
//#include<iostream>
//using std::cin;
//using std::cout;
//#include<algorithm>
//using std::sort;
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define mabs(x) ((x)>0?(x):(0-(x)))
#define N_max 505
#include<memory.h>
int n,m;
int g[N_max][N_max] = { 0 };

int vis[N_max] = { 0 };
int ring[N_max] = { 0 };
int nring = 0;

int chk[N_max] = { 0 };
int checkring(int cur) {//dfs只检查有无环
    if (chk[cur] == -1)
        return 0;

    chk[cur] = -1;
    for (int next = 1; next <= n; ++next) {
        if (chk[next] != 1 && g[cur][next] == 1) {
            if (0== checkring(next)) {
                return 0;
            }
        }
    }
    chk[cur] = 1;
    return 1;
}

int findring(int cur,int rdx) {//dfs,检查有无环,并返回遇到的第一个环
    if (vis[cur] == -1) { 
        ring[rdx] = cur; nring = rdx;
        return 1; 
    }
    vis[cur] = -1; 
    for (int next = 1; next <= n; ++next) {
        if (vis[next]!=1&&g[cur][next]==1) {
            if (1 == findring(next,rdx+1)) { 
                ring[rdx] = cur;
                return 1; 
            }
        }
    }
    vis[cur] = 1;
    return -1;
}
int main() {
    scanf("%d %d", &n,&m);
    int a1, a2;
    for (int i = 0; i < m; ++i) {
        scanf("%d %d", &a1, &a2);
        g[a1][a2] = 1;
    }

    for (int i = 1; i <= n; ++i)
    {
        nring = 0;
        if (1 == findring(i,0)) {
            break;
        }
    }
    int pflag = 0,rflag;
    if (nring == 0) {
        printf("YES"); return 0;
    }
    ++nring;
    for (int i = 0; i<nring&&pflag==0; ++i) {
        memset(chk, 0, sizeof chk);
        g[ring[i]][ring[(i + 1) % nring]] = 0;
        rflag = 1;
        for (int t = 1; t <= n&&rflag;++t)
            rflag = checkring(t);//有环返回0
        pflag = rflag;
        g[ring[i]][ring[(i + 1) % nring]] = 1;

    }
    if (pflag)printf("YES");
    else printf("NO");
}
### Codeforces Problem 1014D 解答与解释 当前问题并未提供关于 **Codeforces Problem 1014D** 的具体描述或相关背景信息。然而,基于常见的竞赛编程问题模式以及可能涉及的主题领域(如数据结构、算法优化等),可以推测该问题可能属于以下类别之一: #### 可能的解法方向 如果假设此问题是典型的计算几何或者图论类题目,则通常会涉及到如下知识点: - 图遍历(DFS 或 BFS) - 贪心策略的应用 - 动态规划的状态转移方程设计 由于未给出具体的输入输出样例和约束条件,这里无法直接针对Problem 1014D 提供精确解答。但是可以根据一般性的解决思路来探讨潜在的方法。 对于类似的复杂度较高的题目,在实现过程中需要注意边界情况处理得当,并且要充分考虑时间效率的要求[^5]。 以下是伪代码框架的一个简单例子用于说明如何构建解决方案逻辑流程: ```python def solve_problem(input_data): n, m = map(int, input().split()) # 初始化必要的变量或数组 graph = [[] for _ in range(n)] # 构建邻接表或其他形式的数据表示方法 for i in range(m): u, v = map(int, input().split()) graph[u].append(v) result = [] # 执行核心算法部分 (比如 DFS/BFS 遍历) visited = [False]*n def dfs(node): if not visited[node]: visited[node] = True for neighbor in graph[node]: dfs(neighbor) result.append(node) for node in range(n): dfs(node) return reversed(result) ``` 上述代码仅为示意用途,实际应用需依据具体题目调整细节参数设置及其功能模块定义[^6]。 #### 关键点总结 - 明确理解题意至关重要,尤其是关注特殊测试用例的设计意图。 - 对于大规模数据集操作时应优先选用高效的时间空间性能表现良好的技术手段。 - 结合实例验证理论推导过程中的每一步骤是否合理有效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值