参考 blog
https://blog.youkuaiyun.com/Clay_Zhang/article/details/82975593
Win10+VS2017 配置darknet yolo 最终可以执行已有训练集。
但是重新按照AB大神 https://github.com/AlexeyAB/darknet
训练Pascal VOC data 出现如下错误怎么解决
F:\TOOLS\darknet-master\build\darknet\x64>darknet.exe detector train data/voc.data cfg/yolov3-voc.cfg data/darknet53.conv.74
yolov3-voc
layer filters size input output
0 conv 32 3 x 3 / 1 244 x 244 x 3 -> 244 x 244 x 32 0.103 BF
1 conv 64 3 x 3 / 2 244 x 244 x 32 -> 122 x 122 x 64 0.549 BF
2 conv 32 1 x 1 / 1 122 x 122 x 64 -> 122 x 122 x 32 0.061 BF
3 conv 64 3 x 3 / 1 122 x 122 x 32 -> 122 x 122 x 64 0.549 BF
4 Shortcut Layer: 1
5 conv 128 3 x 3 / 2 122 x 122 x 64 -> 61 x 61 x 128 0.549 BF
6 conv 64 1 x 1 / 1 61 x 61 x 128 -> 61 x 61 x 64 0.061 BF
7 conv 128 3 x 3 / 1 61 x 61 x 64 -> 61 x 61 x 128 0.549 BF
8 Shortcut Layer: 5
9 conv 64 1 x 1 / 1 61 x 61 x 128 -> 61 x 61 x 64 0.061 BF
10 conv 128 3 x 3 / 1 61 x 61 x 64 -> 61 x 61 x 128 0.549 BF
11 Shortcut Layer: 8
12 conv 256 3 x 3 / 2 61 x 61 x 128 -> 31 x 31 x 256 0.567 BF
13 conv 128 1 x 1 / 1 31 x 31 x 256 -> 31 x 31 x 128 0.063 BF
14 conv 256 3 x 3 / 1 31 x 31 x 128 -> 31 x 31 x 256 0.567 BF
15 Shortcut Layer: 12
16 conv 128 1 x 1 / 1 31 x 31 x 256 -> 31 x 31 x 128 0.063 BF
17 conv 256 3 x 3 / 1 31 x 31 x 128 -> 31 x 31 x 256 0.567 BF
18 Shortcut Layer: 15
19 conv 128 1 x 1 / 1 31 x 31 x 256 -> 31 x 31 x 128 0.063 BF
20 conv 256 3 x 3 / 1 31 x 31 x 128 -> 31 x 31 x 256 0.567 BF
21 Shortcut Layer: 18
22 conv 128 1 x 1 / 1 31 x 31 x 256 -> 31 x 31 x 128 0.063 BF
23 conv 256 3 x 3 / 1 31 x 31 x 128 -> 31 x 31 x 256 0.567 BF
24 Shortcut Layer: 21
25 conv 128 1 x 1 / 1 31 x 31 x 256 -> 31 x 31 x 128 0.063 BF
26 conv 256 3 x 3 / 1 31 x 31 x 128 -> 31 x 31 x 256 0.567 BF
27 Shortcut Layer: 24
28 conv 128 1 x 1 / 1 31 x 31 x 256 -> 31 x 31 x 128 0.063 BF
29 conv 256 3 x 3 / 1 31 x 31 x 128 -> 31 x 31 x 256 0.567 BF
30 Shortcut Layer: 27
31 conv 128 1 x 1 / 1 31 x 31 x 256 -> 31 x 31 x 128 0.063 BF
32 conv 256 3 x 3 / 1 31 x 31 x 128 -> 31 x 31 x 256 0.567 BF
33 Shortcut Layer: 30
34 conv 128 1 x 1 / 1 31 x 31 x 256 -> 31 x 31 x 128 0.063 BF
35 conv 256 3 x 3 / 1 31 x 31 x 128 -> 31 x 31 x 256 0.567 BF
36 Shortcut Layer: 33
37 conv 512 3 x 3 / 2 31 x 31 x 256 -> 16 x 16 x 512 0.604 BF
38 conv 256 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 256 0.067 BF
39 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
40 Shortcut Layer: 37
41 conv 256 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 256 0.067 BF
42 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
43 Shortcut Layer: 40
44 conv 256 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 256 0.067 BF
45 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
46 Shortcut Layer: 43
47 conv 256 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 256 0.067 BF
48 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
49 Shortcut Layer: 46
50 conv 256 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 256 0.067 BF
51 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
52 Shortcut Layer: 49
53 conv 256 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 256 0.067 BF
54 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
55 Shortcut Layer: 52
56 conv 256 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 256 0.067 BF
57 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
58 Shortcut Layer: 55
59 conv 256 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 256 0.067 BF
60 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
61 Shortcut Layer: 58
62 conv 1024 3 x 3 / 2 16 x 16 x 512 -> 8 x 8 x1024 0.604 BF
63 conv 512 1 x 1 / 1 8 x 8 x1024 -> 8 x 8 x 512 0.067 BF
64 conv 1024 3 x 3 / 1 8 x 8 x 512 -> 8 x 8 x1024 0.604 BF
65 Shortcut Layer: 62
66 conv 512 1 x 1 / 1 8 x 8 x1024 -> 8 x 8 x 512 0.067 BF
67 conv 1024 3 x 3 / 1 8 x 8 x 512 -> 8 x 8 x1024 0.604 BF
68 Shortcut Layer: 65
69 conv 512 1 x 1 / 1 8 x 8 x1024 -> 8 x 8 x 512 0.067 BF
70 conv 1024 3 x 3 / 1 8 x 8 x 512 -> 8 x 8 x1024 0.604 BF
71 Shortcut Layer: 68
72 conv 512 1 x 1 / 1 8 x 8 x1024 -> 8 x 8 x 512 0.067 BF
73 conv 1024 3 x 3 / 1 8 x 8 x 512 -> 8 x 8 x1024 0.604 BF
74 Shortcut Layer: 71
75 conv 512 1 x 1 / 1 8 x 8 x1024 -> 8 x 8 x 512 0.067 BF
76 conv 1024 3 x 3 / 1 8 x 8 x 512 -> 8 x 8 x1024 0.604 BF
77 conv 512 1 x 1 / 1 8 x 8 x1024 -> 8 x 8 x 512 0.067 BF
78 conv 1024 3 x 3 / 1 8 x 8 x 512 -> 8 x 8 x1024 0.604 BF
79 conv 512 1 x 1 / 1 8 x 8 x1024 -> 8 x 8 x 512 0.067 BF
80 conv 1024 3 x 3 / 1 8 x 8 x 512 -> 8 x 8 x1024 0.604 BF
81 conv 75 1 x 1 / 1 8 x 8 x1024 -> 8 x 8 x 75 0.010 BF
82 yolo
83 route 79
84 conv 256 1 x 1 / 1 8 x 8 x 512 -> 8 x 8 x 256 0.017 BF
85 upsample 2x 8 x 8 x 256 -> 16 x 16 x 256
86 route 85 61
87 conv 256 1 x 1 / 1 16 x 16 x 768 -> 16 x 16 x 256 0.101 BF
88 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
89 conv 256 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 256 0.067 BF
90 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
91 conv 256 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 256 0.067 BF
92 conv 512 3 x 3 / 1 16 x 16 x 256 -> 16 x 16 x 512 0.604 BF
93 conv 75 1 x 1 / 1 16 x 16 x 512 -> 16 x 16 x 75 0.020 BF
94 yolo
95 route 91
96 conv 128 1 x 1 / 1 16 x 16 x 256 -> 16 x 16 x 128 0.017 BF
97 upsample 2x 16 x 16 x 128 -> 32 x 32 x 128
98 route 97 36
99 Layer before convolutional layer must output image.: No error
F:\TOOLS\darknet-master\build\darknet\x64>pause
请按任意键继续. . .
4826

被折叠的 条评论
为什么被折叠?



