codeforces567E President and Roads

本文介绍了一种结合迪杰斯特拉算法和Tarjan算法解决特定道路优化问题的方法。通过两次求最短路径并结合Tarjan算法来判断哪些街道对于总统回家至关重要,哪些可以通过调整达到更优效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

题目大意:总统要回家,会经过一些街道,每条街道都是单向的并且拥有权值。现在,为了让总统更好的回家,要对每一条街道进行操作:1)如果该街道一定在最短路上,则输出“YES”。2)如果该街道修理过后,该边所在的最短路可以取代原先的最短路,则输出“CAN x”,x是修改该街道的花费,就是权值减小的值。3)如果该街道是一条不连通的街道,或者修改过后权值小于等于0,则输出“NO”。

解析:需要迪杰斯特拉和tarjan的结合,不熟悉的话可以点开链接。

正向取边,求一次最短路得到d1[], 然后反向取边,再求一次最短路得到d2[]。接着开始判断每一条边是否在最短路上。把这些边构成一个新的图,然后利用tarjan判断每一条边是否是必不可少的。之后判断不是桥的每一条边是否可以被修改,也就是d1[t]-d1[a[i]]-d2[b[i]]-1>0
具体细节看代码

#include <bits/stdc++.h>
#define ll long long
#define pb push_back
#define inf 0x3f3f3f3f
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rep1(i,a,b) for(int i=a;i>=b;i--)
#define INF 1000000000000000000LL
using namespace std;
const int N=1e5+100;
long long a[N],b[N],l[N],d1[N],d2[N],dfn[N],low[N],n,m,s,t,index;
bool bridge[N],vis[N];
vector<pair<long long,long long> > edge[N];
void dijkstra(long long v,long long *d)
{
    long long t;
    priority_queue<pair<long long,long long>,vector<pair<long long,long long> >,greater<pair<long long,long long> > > pq;
    for(long long i=1;i<=n;i++)
        d[i]=INF;
    d[v]=0;
    pq.push(make_pair(0,v));
    while(!pq.empty())
    {
        t=pq.top().second;
        pq.pop();
        for(long long i=0;i<edge[t].size();i++)
            if(d[edge[t][i].first]>d[t]+edge[t][i].second)
            {
                d[edge[t][i].first]=d[t]+edge[t][i].second;
                pq.push(make_pair(d[edge[t][i].first],edge[t][i].first));
            }
    }
    return;
}
void tarjan(long long x)
{
    index++;
    dfn[x]=index;
    low[x]=index;
    for(long long i=0;i<edge[x].size();i++)
    {
        if(vis[edge[x][i].second])
            continue;
        vis[edge[x][i].second]=true;
        if(!dfn[edge[x][i].first])
        {
            tarjan(edge[x][i].first);
            low[x]=min(low[x],low[edge[x][i].first]);
            if(dfn[x]<low[edge[x][i].first])
                bridge[edge[x][i].second]=true;
        }
        else low[x]=min(low[x],dfn[edge[x][i].first]);
    }
    return;
}
int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>m>>s>>t;
    for(long long i=0;i<m;i++)
        cin>>a[i]>>b[i]>>l[i];
    for(long long i=0;i<m;i++)
        edge[a[i]].push_back(make_pair(b[i],l[i]));
    dijkstra(s,d1);//正向求最短路
    for(long long i=1;i<=n;i++)
        edge[i].clear();
    for(long long i=0;i<m;i++)
        edge[b[i]].push_back(make_pair(a[i],l[i]));
    dijkstra(t,d2);//反向求最短路
    for(long long i=1;i<=n;i++)
        edge[i].clear();
    for(long long i=0;i<m;i++)//制造一个新图
        if(d1[a[i]]+l[i]+d2[b[i]]==d1[t])//如果该边在最短路上
        {
            edge[a[i]].push_back(make_pair(b[i],i));
            edge[b[i]].push_back(make_pair(a[i],i));
        }
    tarjan(s);
    for(long long i=0;i<m;i++)
    {
        if(bridge[i])
            cout<<"YES"<<endl;
        else if(d1[t]-d1[a[i]]-d2[b[i]]-1>0)//该边可以修改
            cout<<"CAN "<<l[i]-(d1[t]-d1[a[i]]-d2[b[i]]-1)<<endl;
        else cout<<"NO"<<endl;
    }
    return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值