原码、反码、补码

博客涉及汇编和C语言相关内容,虽未给出具体内容,但推测围绕这两种编程语言展开,属于信息技术领域中后端开发的范畴。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 相信大家看到这个标题都不屑一顾,因为在任何一本计算机基础知识书的第一章都有他们的解释,但是在书上我们只能找到一些简单的定义,没次看过之后不久就忘了。最近论坛里有人问起这些概念,看到很多人的回复是以前看过现在忘了去看看某某书之类,很少有给出一个合理的解释。于是本人就开始思考(虽然上帝会发笑,我还是要思考。),于是得出了以下的结论。

     数值在计算机中表示形式为机器数,计算机只能识别01,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自<<数学发展史>>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题.

数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为

(-127~-0 +0~127)256.

  有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits

( 1 ) 10-  ( 1 )10 =  ( 1 )10 + ( -1 )10 =  ( 0 )10

(00000001) + (10000001) = (10000010) = ( -2 ) 显然不正确.

  因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算:

 ( 1 )10 -  ( 1 ) 10=  ( 1 ) 10+ ( -1 ) 10=  ( 0 )10

 (00000001) + (11111110) =  (11111111) =  ( -0 )  有问题.

( 1 )10 -  ( 2)10 =  ( 1 )10 + ( -2 )10 =  ( -1 )10

(00000001) + (11111101) =  (11111110) =  ( -1 ) 正确

问题出现在(+0)(-0),在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大).

于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为:

(-128~0~127)256.

注意:(-128)没有相对应的原码和反码, (-128) = (10000000)  补码的加减运算如下:

( 1 ) 10-  ( 1 ) 10=  ( 1 )10 + ( -1 )10 =  ( 0 )10

(00000001) + (11111111) =  (00000000) = ( 0 ) 正确

( 1 ) 10-  ( 2) 10=  ( 1 )10 + ( -2 )10 =  ( -1 )10

(00000001) + (11111110) =  (11111111) = ( -1 )  正确

   所以补码的设计目的是:

     ⑴使符号位能与有效值部分一起参加运算,从而简化运算规则.

⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计

  所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码。看了上面这些大家应该对原码、反码、补码有了新的认识了吧!

### 原码反码补码的概念及区别 在计算机系统中,数值的表示和运算依赖于原码反码补码这三种编码形式。它们的核心区别在于对负数的表示方式不同,并且在加减法运算中的处理逻辑也有所差异。 #### 原码 原码是最直观的二进制表示方法,其中最高位为符号位(0 表示正数,1 表示负数),其余位表示数值的绝对值。例如: - +1 的 8 位原码为 `00000001` - -1 的 8 位原码为 `10000001` 原码的优点是表示直观,但缺点是在进行加减运算时需要额外判断符号位,导致计算复杂度较高 [^1]。 #### 反码 反码是对原码的改进形式,主要用于简化补码的生成或解析过程: - 正数的反码原码相同。 - 负数的反码为符号位保持不变,其余位逐位取反(0 变 1,1 变 0)。 例如: - +1 的反码为 `00000001` - -1 的反码为 `11111110` 需要注意的是,在 8 位系统中,+0 和 -0反码分别为 `00000000` 和 `11111111`,这会导致两个不同的编码表示同一个数值 [^1]。 #### 补码 补码是现代计算机中最常用的数值表示方式,它解决了原码反码中存在的多个问题,尤其是简化了加减法运算的实现: - 正数的补码原码相同。 - 负数的补码反码加 1。 例如: - +1 的补码为 `00000001` - -1 的补码为 `11111111` 补码的一个重要特性是其可以表示一个比原码范围更广的数值。例如,在 8 位系统中,原码的表示范围为 -127 到 +127,而补码的表示范围为 -128 到 +127。其中 `-128` 的补码为 `10000000`,这个值没有对应的原码表示 [^2]。 #### 计算方法总结 | 类型 | 正数 | 负数 | |--------|--------------------------|--------------------------------------| | 原码 | 符号位为 0,其余为数值本身 | 符号位为 1,其余为数值的绝对值 | | 反码 | 与原码相同 | 原码符号位不变,其余位取反 | | 补码 | 与原码相同 | 反码加 1 | #### 在计算机底层的应用 补码被广泛用于计算机的底层数值存储和运算,主要原因如下: 1. **统一加减运算**:使用补码可以将减法转换为加法,从而简化硬件设计。 2. **唯一零表示**:在补码系统中,0 的表示是唯一的(全 0)。 3. **溢出处理**:补码支持模运算,因此可以自然地处理溢出情况。 例如,在 Java 中,当整数类型发生截断时,结果会自动以补码形式解释。以下代码展示了如何通过强制类型转换截断高位,得到补码表示的数值: ```java public class Main { public static void main(String[] args) { int a = 300; // 00000000 00000000 00000001 00101100 byte b = (byte)a; // 00101100 -> 44 int c = 200; // 00000000 00000000 00000000 11001000 byte d = (byte)c; // 11001000 -> -56 System.out.println(b); // 输出 44 System.out.println(d); // 输出 -56 } } ``` 上述代码表明,当高位被截断后,低位部分按照补码规则重新解释为有符号整数 [^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值