Flink SQL 详细剖析大数据应用

Flink SQL 是 Flink 实时计算为简化计算模型,降低用户使用实时计算门槛而设计的一套符合标准 SQL 语义的开发语言。
自 2015 年开始,阿里巴巴开始调研开源流计算引擎,最终决定基于 Flink 打造新一代计算引擎,针对 Flink 存在的不足进行优化和改进,并且在 2019 年初将最终代码开源,也就是我们熟知的 Blink。Blink 在原来的 Flink 基础上最显著的一个贡献就是 Flink SQL 的实现。

Flink SQL 是面向用户的 API 层,在我们传统的流式计算领域,比如 Storm、Spark Streaming 都会提供一些 Function 或者 Datastream API,用户通过 Java 或 Scala 写业务逻辑,这种方式虽然灵活,但有一些不足,比如具备一定门槛且调优较难,随着版本的不断更新,API 也出现了很多不兼容的地方。

在这个背景下,毫无疑问,SQL 就成了我们最佳选择,之所以选择将 SQL 作为核心 API,是因为其具有几个非常重要的特点:

SQL 属于设定式语言,用户只要表达清楚需求即可,不需要了解具体做法;

SQL 可优化,内置多种查询优化器,这些查询优化器可为 SQL 翻译出最优执行计划;

SQL 易于理解,不同行业和领域的人都懂,学习成本较低;

SQL 非常稳定,在数据库 30 多年的历史中,SQL 本身变化较少;

流与批的统一,Flink 底层 Runtime 本身就是一个流与批统一的引擎,而 SQL 可以做到 API 层的流与批统一。

  1. Flink SQL 常用算子
    SELECT:

SELECT 用于从 DataSet/DataStream 中选择数据,用于筛选出某些列。

示例:

SELECT * FROM Table; // 取出表中的所有列

SELECT name,age FROM Table; // 取出表中 name 和 age 两列

与此同时 SELECT 语句中可以使用函数和别名,例如我们上面提到的 WordCount 中:

SELECT word, COUNT(word) FROM table GROUP BY word;

WHERE:

WHERE 用于从数据集/流中过滤数据,与 SELECT 一起使用,用于根据某些条件对关系做水平分割,即选择符合条件的记录。

示例:

SELECT name,age FROM Table where name LIKE ‘% 小明 %’;

SELECT * FROM Table WHERE age = 20;

WHERE 是从原数据中进行过滤,那么在 W

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值