63. Unique Paths II
题目:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
代码如下:
方案一:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size() , n = obstacleGrid[0].size();
vector<vector<int>> dp(m+1,vector<int>(n+1,0));
dp[0][1] = 1;
for(int i = 1 ; i <= m ; ++i)
for(int j = 1 ; j <= n ; ++j)
if(!obstacleGrid[i-1][j-1])
dp[i][j] = dp[i-1][j]+dp[i][j-1];
return dp[m][n];
}
};
方案二:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<int> dp(n+1,0);
m--;
int i = n-1;
while(i >= 0 && obstacleGrid[m][i] != 1){
dp[i] = 1;
--i;
}
while(m-- > 0){ //这种循环判断可以将只有一行的情况统一考虑进去
for(i = n-1; i >= 0; i--){
dp[i] = (obstacleGrid[m][i] == 1)? 0 : dp[i+1] + dp[i];
}
}
return dp[0];
}
};
解题思路:
- 用一个长度为n+1的vector对每一列dp ;
- 初始化一个长度为n+1,所有值都为0的dp;
- 最开始的时候初始化最后一行,如果不是障碍物,就将dp的对应位置变成1;
- 然后分别对倒数第二行,倒数第三行……第一行更新dp[i],dp[i] = (obstacleGrid[m][i] == 1) ? 0 : dp[i] + dp[i+1];
- 最后dp中存储的是第一行的每一个非障碍物点到终点的路径数;
- dp[0]就是起点。