TensorFlow的基本用法

本文介绍TensorFlow的基本使用方法,涵盖图(graph)的概念、会话(Session)的使用、Tensor数据结构的理解及变量、feed和fetch的功能。同时提供示例代码帮助读者快速上手。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本使用

TensorFlow具体流程:

  • 使用图 (graph) 来表示计算任务.
  • 在被称之为 会话 (Session) 的上下文 (context) 中执行图.
  • 使用 tensor 表示数据.
  • 通过 变量 (Variable) 维护状态.
  • 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.
综述

TensorFlow是一个编程系统,使用图来表示计算任务,图中的节点称之为op(operation的缩写)。一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor,每个Tensor是一个类型化的多维数组。例如,你可以将一个小组图像集合表示为一个四维浮点数数组,这四个维度分别是[batch, height, width, channels].

这里的Tensor图描述了计算的过程,为了计算,图必须在会话里被启动。会话将图的op分发到CPU或者GPU之类的设备上,来执行这些op。执行完毕后,将产生的tensor返回。

  • 在python中,返回的tensor为numpy的narray对象;
  • 在C/C++中,返回的tensor为tensor:Tensor实例;
计算图

Tensor程序分为两个阶段:构建和运行。在构建阶段,op的执行步骤被描述为一个图,在执行阶段使用会话(Session)执行图中的op。

例如,通常在构建阶段构建一个图来表示和训练神经网络,然后执行阶段执行图中的训练op。

  1. TensorFlow 支持 C, C++, Python 编程语言. 目前, TensorFlow 的 Python 库更加易用, 它提供了大量的辅助函数来简化构建图的工作, 这些函数尚未被 C 和 C++ 库支持.
  2. 三种语言的会话库 (session libraries) 是一致的.
构建图

构建图的第一步,是创建源op(source op)。源op不需要任何输入,例如常量(Constant)。源op的输出被传递到其他op做运算。

Python中,op构建器的返回值代表被构造出的op的输出。这些返回值可以传递给其他的op构造器作为输入。

在TensorFlow Python中库中有一个默认的图(default graph),op构造器可以为其增加节点。这个默认图对许多程序来说已经足够用了。可以参考下面链接Graph类
的文档来管理多个图。

for example :
代码
import tensorflow ad tf
# 创建一个常量op,产生一个 1×2 矩阵。这个被作为一个节点
# 加到默认图中
#
#构造器的返回值代表该常量op的返回值
matrix1 = tf.constant( [ [ 3. ,3. ] ] )

#创建另外一个常量,产生一个 2×1 矩阵
matrix2 = tf.constant( [ [ 2. ,2. ] ] )

#创建一个矩阵乘法 matmul op ,把‘matrix1’和‘matrix2’作为输入;
#返回值‘product’代表矩阵乘法的结果。
product = tf.matmul(matrix1,matrix2)

这样默认图现在有三个节点,两个constant() op,和一个matmul op。为了进行真正的矩阵相乘运算,并得到矩阵乘法的结果,必须首先在会话里启动这个图。

在一个会话里启动图

当构造阶段完成后,才能启动图。启动图的第一步是创建一个 Session 对象,如果没有任何创建参数,会话构造器将启动默认图。

想了解完整的会话API,可以阅读 Session类

代码示例:
# 启动默认图.
sess = tf.Session()
# 调用sess的‘run()’方法来执行矩阵乘法op,传入’\product’作为该方法的参数
#上面提到, ‘product’ 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回
# 矩阵乘法 op 的输出
#
# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的
#
#函数调用 ‘run(product)’ 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
#
#返回值 ‘result’ 是一个 numpy ndarray 对象.
result = sess.run(product)
print result
# ==>[ [ 12. ] ]
# 任务完成,关闭会话
sess.close()

* Session 对象在使用完后需要关闭以释放资源. 除了显式调用 close 外, 也可以使用 “with” 代码块 来自动完成关闭动作。
with tf.Session() as sess:
result = sess.run([product])
print result

在实现上, TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU). 一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测. 如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.

如果机器上有超过一个可用的 GPU, 除第一个外的其它 GPU 默认是不参与计算的. 为了让 TensorFlow 使用这些 GPU, 你必须将 op 明确指派给它们执行. with…Device 语句用来指派特定的 CPU 或 GPU 执行操作:

with tf.Session() as sess:
with tf.device(“/gpu:1”):
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

设备用字符串进行标识. 目前支持的设备包括:

“/cpu:0”: 机器的 CPU.
“/gpu:0”: 机器的第一个 GPU, 如果有的话.
“/gpu:1”: 机器的第二个 GPU, 以此类推.
阅读使用GPU章节, 了解 TensorFlow GPU 使用的更多信息.

交互式使用

文档中的 Python 示例使用一个会话 Session 来 启动图, 并调用 Session.run() 方法执行操作.

为了便于使用诸如 IPython 之类的 Python 交互环境, 可以使用 InteractiveSession 代替 Session 类, 使用 Tensor.eval() 和 Operation.run() 方法代替 Session.run(). 这样可以避免使用一个变量来持有会话.

# 进入一个交互式 TensorFlow 会话.
import tensorflow as tf
sess = tf.InteractiveSession()

x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])

# 使用初始化器 initializer op 的 run() 方法初始化 ‘x’
x.initializer.run()

# 增加一个减法 sub op, 从 ‘x’ 减去 ‘a’. 运行减法 op, 输出结果
sub = tf.sub(x, a)
print sub.eval()
# ==> [-2. -1.]
Tensor
TensorFlow 程序使用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor. 你可以把 TensorFlow tensor 看作是一个 n 维的数组或列表. 一个 tensor 包含一个静态类型 rank, 和 一个 shape. 想了解 TensorFlow 是如何处理这些概念的, 参见 Rank, Shape, 和 Type.

变量

Variables for more details. 变量维护图执行过程中的状态信息。

# 创建一个变量, 初始化为标量 0.
state = tf.Variable(0, name=”counter”)

# 创建一个 op, 其作用是使 state 增加 1

one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)

# 启动图后, 变量必须先经过初始化 (init) op 初始化,
# 首先必须增加一个初始化 op 到图中.
init_op = tf.initialize_all_variables()

# 启动图, 运行 op
with tf.Session() as sess:
# 运行 ‘init’ op
sess.run(init_op)
# 打印 ‘state’ 的初始值
print sess.run(state)
# 运行 op, 更新 ‘state’, 并打印 ‘state’
for _ in range(3):
sess.run(update)
print sess.run(state)

# 输出:
# 0
# 1
# 2
# 3

通常会将一个统计模型中的参数表示为一组变量. 例如, 你可以将一个神经网络的权重作为某个变量存储在一个 tensor 中. 在训练过程中, 通过重复运行训练图, 更新这个 tensor.

Fetch

为了取回操作的输出内容, 可以在使用 Session 对象的 run() 调用 执行图时, 传入一些 tensor, 这些 tensor 会帮助你取回结果. 在之前的例子里, 我们只取回了单个节点 state, 但是你也可以取回多个 tensor:

input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)

with tf.Session() as sess:
result = sess.run([mul, intermed])
print result

# 输出:
# [array([ 21.], dtype=float32), array([ 7.], \dtype=float32)]
需要获取的多个 tensor 值,在 op 的一次运行中一起获得(而不是逐个去获取 tensor)。

Feed

上述示例在计算图中引入了 tensor, 以常量或变量的形式存储. TensorFlow 还提供了 feed 机制, 该机制 可以临时替代图中的任意操作中的 tensor 可以对图中任何操作提交补丁, 直接插入一个 tensor.

### TensorFlow基本用法入门 TensorFlow是一个开源的机器学习框架,广泛应用于构建和训练各种类型的模型。以下是关于TensorFlow基本用法的一些核心概念和操作: #### 1. 安装TensorFlow 在使用TensorFlow之前,需要先安装它。可以通过pip命令来完成安装: ```bash pip install tensorflow ``` 确认安装成功后可以运行以下代码验证版本号: ```python import tensorflow as tf print(tf.__version__) ``` 此部分未涉及具体引用。 #### 2. 创建张量 (Tensors) 张量是TensorFlow中的基础数据结构,类似于NumPy数组。 ```python # 创建常量张量 tensor_a = tf.constant([[1, 2], [3, 4]], dtype=tf.int32) # 打印张量形状和内容 print(tensor_a.shape) # 输出: (2, 2)[^1] print(tensor_a.numpy()) # 转换为numpy array并打印[^2] ``` #### 3. 构建计算图 (Graphs and Sessions) 早期版本的TensorFlow依赖于显式的图定义和会话管理。虽然现代版本更倾向于即时执行模式(eager execution),但在某些场景下仍需理解这一机制。 - **创建计算图** ```python graph = tf.Graph() with graph.as_default(): a = tf.placeholder(tf.float32, shape=[None, 3]) # 占位符用于输入数据[^1] b = tf.Variable(0.5, name='b') # 可变参数初始化 ``` - **启动会话(Session)** 并运行图 ```python init_op = tf.global_variables_initializer() # 初始化变量 with tf.Session(graph=graph) as sess: sess.run(init_op) # 执行初始化操作 result = sess.run(b + 1) # 计算表达式的结果[^2] print(result) ``` 注意,在TensorFlow 2.x中,默认启用了eager execution,简化了许多复杂流程。 #### 4. 使用Keras API进行高层抽象开发 对于初学者来说,推荐利用内置的`tf.keras`模块实现神经网络的设计与训练过程。下面展示如何建立简单的全连接层模型: ```python model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), # 输入展平层 tf.keras.layers.Dense(128, activation='relu'), # 隐藏层ReLU激活函数 tf.keras.layers.Dropout(0.2), # Dropout防止过拟合 tf.keras.layers.Dense(10, activation='softmax') # 输出层Softmax分类器 ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', # 损失函数配置 metrics=['accuracy']) # 性能评估指标设置 history = model.fit(x_train, y_train, epochs=5) # 开始训练循环 test_loss, test_acc = model.evaluate(x_test, y_test) # 测试集上的表现分析 ``` 以上介绍了TensorFlow的基础组件及其典型应用方式,涵盖了从环境搭建到实际项目实践的关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值